added script to combine all files in one

This commit is contained in:
Tanushree Tunstall 2020-07-07 16:06:11 +01:00
parent 5addb85851
commit 943513a338
4 changed files with 435 additions and 748 deletions

View file

@ -1,298 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 4 (mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 4 dfs with aa position as linking column
# This is done in 2 steps:
# merge 1: of 3 dfs (filenames in lowercase)
# <gene.lower()>_dssp.csv
# <gene.lower()>_kd.csv
# <gene.lower()>_rd.csv
# merge 2: of 2 dfs
# gene.lower() + '_complex_mcsm_norm.csv' (!fix name)
# output df from merge1
# Input: 3 dfs
# <gene.lower()>_dssp.csv
# <gene.lower()>_kd.csv
# <gene.lower()>_rd.csv
# gene.lower() + '_complex_mcsm_norm.csv' (!fix name)
# Output: .csv of all 4 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
#import numpy as np
import argparse
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name', default = None) # case sensitive
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
#gene_match = gene + '_p.'
drug = args.drug
gene = args.gene
#==========
# data dir
#==========
datadir = homedir + '/' + 'git/Data'
#=======
# input
#=======
indir = datadir + '/' + drug + '/' + 'output'
in_filename1 = gene.lower() + '_dssp.csv'
in_filename2 = gene.lower() + '_kd.csv'
in_filename3 = gene.lower() + '_rd.csv'
#in_filename4 = 'mcsm_complex1_normalised.csv' # FIXNAME
in_filename4 = gene.lower() + '_complex_mcsm_norm.csv'
infile1 = indir + '/' + in_filename1
infile2 = indir + '/' + in_filename2
infile3 = indir + '/' + in_filename3
infile4 = indir + '/' + in_filename4
print('\nInput path:', indir
, '\nInput filename1:', in_filename1
, '\nInput filename2:', in_filename2
, '\nInput filename3:', in_filename3
, '\nInput filename4:', in_filename4
, '\n===================================================================')
#=======
# output
#=======
outdir = datadir + '/' + drug + '/' + 'output'
out_filename = gene.lower() + '_mcsm_struct_params.csv'
outfile = outdir + '/' + out_filename
print('Output filename:', out_filename
, '\nOutput path:', outdir
, '\n===================================================================')
#%% end of variable assignment for input and output files
#=======================================================================
#%% function/methd to combine 4 dfs
def combine_dfs(dssp_csv, kd_csv, rd_csv, mcsm_csv, out_combined_csv):
"""
Combine 4 dfs
@param dssp_df: csv file (output from dssp_df.py)
@type dssp_df: string
@param kd_df: csv file (output from kd_df.py)
@type ks_df: string
@param rd_df: csv file (output from rd_df.py)
@type rd_df: string
# FIXME
@param mcsm_df: csv file (output of mcsm pipeline)CHECK}
@type mcsm_df: string
@param out_combined_csv: csv file output
@type out_combined_csv: string
@return: none, writes combined df as csv
"""
#========================
# read input csv files to combine
#========================
dssp_df = pd.read_csv(dssp_csv, sep = ',')
kd_df = pd.read_csv(kd_csv, sep = ',')
rd_df = pd.read_csv(rd_csv, sep = ',')
mcsm_df = pd.read_csv(mcsm_csv, sep = ',')
print('Reading input files:'
, '\ndssp file:', dssp_csv
, '\nNo. of rows:', len(dssp_df)
, '\nNo. of cols:', len(dssp_df.columns)
, '\nColumn names:', dssp_df.columns
, '\n==================================================================='
, '\nkd file:', kd_csv
, '\nNo. of rows:', len(kd_df)
, '\nNo. of cols:', len(kd_df.columns)
, '\nColumn names:', kd_df.columns
, '\n==================================================================='
, '\nrd file:', rd_csv
, '\nNo. of rows:', len(rd_df)
, '\nNo. of cols:', len(rd_df.columns)
, '\nColumn names:', rd_df.columns
, '\n==================================================================='
, '\nrd file:', mcsm_csv
, '\nNo. of rows:', len(mcsm_df)
, '\nNo. of cols:', len(mcsm_df.columns)
, '\nColumn names:', mcsm_df.columns
, '\n===================================================================')
#========================
# merge 1 (combined_df1)
# concatenating 3dfs:
# dssp_df, kd_df, rd_df
#========================
print('starting first merge...\n')
# checking no. of rows
print('Checking if no. of rows of the 3 dfs are equal:\n'
, len(dssp_df) == len(kd_df) == len(rd_df)
, '\nReason: fasta files and pdb files vary since not all pos are part of the structure'
, '\n===================================================================')
# variables for sanity checks
expected_rows_df1 = max(len(dssp_df), len(kd_df), len(rd_df))
# beware of harcoding! used for sanity check
ndfs = 3
ncol_merge = 1
offset = ndfs- ncol_merge
expected_cols_df1 = len(dssp_df.columns) + len(kd_df.columns) + len(rd_df.columns) - offset
print('Merge 1:'
, '\ncombining 3dfs by commom col: position'
, '\nExpected nrows in combined_df:', expected_rows_df1
, '\nExpected ncols in combined_df:', expected_cols_df1
, '\nResetting the common col as the index'
, '\n===================================================================')
#dssp_df.set_index('position', inplace = True)
#kd_df.set_index('position', inplace = True)
#rd_df.set_index('position', inplace =True)
#combined_df = pd.concat([dssp_df, kd_df, rd_df], axis = 1, sort = False).reset_index()
#combined_df.rename(columns = {'index':'position'})
combined_df1 = pd.concat(
(my_index.set_index('position') for my_index in [dssp_df, kd_df, rd_df])
, axis = 1, join = 'outer').reset_index()
# sanity check
print('Checking dimensions of concatenated df1...')
if len(combined_df1) == expected_rows_df1 and len(combined_df1.columns) == expected_cols_df1:
print('PASS: combined df has expected dimensions'
, '\nNo. of rows in combined df:', len(combined_df1)
, '\nNo. of cols in combined df:', len(combined_df1.columns)
, '\n===============================================================')
else:
print('FAIL: combined df does not have expected dimensions'
, '\nNo. of rows in combined df:', len(combined_df1)
, '\nNo. of cols in combined df:', len(combined_df1.columns)
, '\n===============================================================')
#========================
# merge 2 (combined_df2)
# concatenating 2dfs:
# mcsm_df, combined_df1 (result of merge1)
# sort the cols
#========================
print('starting second merge...\n')
# rename col 'Position' in mcsm_df to lowercase 'position'
# as it matches the combined_df1 colname to perfom merge
#mcsm_df.columns
#mcsm_df.rename(columns = {'Position':'position'}) # not working!
# copy 'Position' column with the correct colname
print('Firstly, copying \'Position\' col and renaming \'position\' to allow merging'
, '\nNo. of cols before copying: ', len(mcsm_df.columns))
mcsm_df['position'] = mcsm_df['Position']
print('No. of cols after copying: ', len(mcsm_df.columns))
# sanity check
if mcsm_df['position'].equals(mcsm_df['Position']):
print('PASS: Copying worked correctly'
, '\ncopied col matches original column'
, '\n===============================================================')
else:
print('FAIL: copied col does not match original column'
, '\n================================================================')
# variables for sanity checks
expected_rows_df2 = len(mcsm_df)
# beware of harcoding! used for sanity check
ndfs = 2
ncol_merge = 1
offset = ndfs - ncol_merge
expected_cols_df2 = len(mcsm_df.columns) + len(combined_df1.columns) - offset
print('Merge 2:'
, '\ncombining 2dfs by commom col: position'
, '\nExpected nrows in combined_df:', expected_rows_df2
, '\nExpected ncols in combined_df:', expected_cols_df2
, '\n===================================================================')
combined_df2 = mcsm_df.merge(combined_df1, on = 'position')
# sanity check
print('Checking dimensions of concatenated df2...')
if len(combined_df2) == expected_rows_df2 and len(combined_df2.columns) == expected_cols_df2:
print('PASS: combined df2 has expected dimensions'
, '\nNo. of rows in combined df:', len(combined_df2)
, '\nNo. of cols in combined df:', len(combined_df2.columns)
, '\n===============================================================')
else:
print('FAIL: combined df2 does not have expected dimensions'
, '\nNo. of rows in combined df:', len(combined_df2)
, '\nNo. of cols in combined df:', len(combined_df2.columns)
, '\n===============================================================')
#===============
# writing file
#===============
print('Writing file:'
, '\nFilename:', out_combined_csv
# , '\nPath:', outdir
, '\nExpected no. of rows:', len(combined_df2)
, '\nExpected no. of cols:', len(combined_df2.columns)
, '\n=========================================================')
combined_df2.to_csv(out_combined_csv, header = True, index = False)
#%% end of function
#=======================================================================
#%% call function
#combine_dfs(infile1, infile2, infile3, infile4, outfile)
#=======================================================================
def main():
print('Combining 4 dfs:\n'
, in_filename1, '\n'
, in_filename2, '\n'
, in_filename3, '\n'
, in_filename4, '\n'
, 'output csv:', out_filename)
combine_dfs(infile1, infile2, infile3, infile4, outfile)
print('Finished Writing file:'
, '\nFilename:', outfile
## , '\nNo. of rows:', ''
## , '\nNo. of cols:', ''
, '\n===========================================================')
if __name__ == '__main__':
main()
#%% end of script
#=======================================================================

177
scripts/combining_FIXME.py Executable file
View file

@ -0,0 +1,177 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs on comm_valson cols by detecting them
# includes sainity checks
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
import re
#from varname import nameof
#%% end of variable assignment for input and output files
#=======================================================================
#%% function/methd to combine dfs
def detect_common_cols (df1, df2):
"""
Detect comm_valson cols
@param df1: df
@type df1: pandas df
@param df2: df
@type df2: pandas df
@return: comm_valson cols
@type: list
"""
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
print('Length of comm_cols:', len(common_cols)
, '\nmerging column/s:', common_cols
, '\ntype:', type(common_cols)
, '\ndtypes in merging columns:\n', df1[common_cols].dtypes)
return common_cols
#%% Function to combine 2 dfs by detecting commom cols and performing
# sanity checks on the output df
def combine_dfs_with_checks(df1, df2, my_join = 'outer'):
"""
Combine 2 dfs by finding merging columns automatically
@param df1: data frame
@type df1: pandas df
@param df2: data frame
@type df2: pandas df
@my_join: join type for merging
@type my_join: string
@return: combined_df
@type: pandas df
"""
print('Finding comm_cols and merging cols:'
,'\n=========================================================')
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
print('Length of comm_cols:', len(common_cols)
, '\nmerging column/s:', common_cols
, '\ntype:', type(common_cols))
#print('\ndtypes in merging columns:\n', df1[common_cols].dtypes)
print('selecting consistent dtypes for merging (object i.e string)')
#merging_cols = df1[comm_valson_cols].select_dtypes(include = [object]).columns.tolist()
#merging_cols = df1[comm_valson_cols].select_dtypes(include = ['int64']).columns.tolist()
merging_cols = common_cols.copy()
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
, '\n=========================================================')
#========================
# merge 1 (combined_df)
# concatenating 2dfs:
# df1, df2
#========================
# checking cross-over of mutations in the two dfs to merge
ndiff_1 = df1[merging_cols].squeeze().isin(df2[merging_cols].squeeze()).sum()
ndiff1 = df1.shape[0] - ndiff_1
print('There are', ndiff1, 'unmatched mutations in left df')
#missing_mutinfo = df1[~left_df['mutationinformation'].isin(df2['mutationinformation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
ndiff_2 = df2[merging_cols].squeeze().isin(df1[merging_cols].squeeze()).sum()
ndiff2 = df2.shape[0] - ndiff_2
print('There are', ndiff2, 'unmatched mutations in right_df')
#comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
#comm_vals_count = len(comm_vals)
#print('length of comm_valson values:', comm_vals_count , '\ntype:', type(comm_vals_count))
#========================
# merging dfs & sanity checks
#========================
fail = False
print('combing with:', my_join)
comb_df = pd.merge(df1, df2, on = merging_cols, how = my_join)
expected_cols = df1.shape[1] + df2.shape[1] - nmerging_cols
if my_join == 'right':
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
expected_rows = df2_nd.shape[0]
if my_join == 'left':
expected_rows = df1.shape[0]
#if my_join == 'inner':
# expected_rows = comm_vals_count
#if my_join == 'outer':
# df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
# df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
# expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - comm_vals_count
if my_join == ('inner' or 'outer') and len(merging_cols) > 1:
#comm_vals = np.intersect1d(df1['mutationinformation'], df2['mutationinformation'])
print('length of merging_cols > 1, therefore omitting row checks')
combined_df = comb_df.copy()
expected_rows = len(combined_df)
else:
comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
print('length of merging_cols == 1, calculating expected rows in merged_df')
combined_df = comb_df.drop_duplicates(subset = merging_cols, keep ='first')
if my_join == 'inner':
expected_rows = len(comm_vals)
if my_join == 'outer':
df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - len(comm_vals)
if len(combined_df) == expected_rows and len(combined_df.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df.columns))
if fail:
sys.exit()
#if clean:
#foo = combined_df2.filter(regex = r'.*_x|_y', axis = 1)
#print(foo.columns)
#print('Detected duplicate cols with suffix: _x _y'
# , '\Dropping duplicate cols and cleaning')
# drop position col containing suffix '_y' and then rename col without suffix
combined_df_clean = combined_df.drop(combined_df.filter(regex = r'.*_y').columns, axis = 1)
combined_df_clean.rename(columns=lambda x: re.sub('_x$','', x), inplace = True)
return combined_df_clean
#%% end of function
#=======================================================================

View file

@ -8,169 +8,280 @@ Created on Tue Aug 6 12:56:03 2019
# FIXME: change filename 2(mcsm normalised data) # FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline # to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#======================================================================= #=======================================================================
# Task: combine 2 dfs on comm_valson cols by detecting them # Task: combine 2 dfs with aa position as linking column
# includes sainity checks
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#======================================================================= #=======================================================================
#%% load packages #%% load packages
import sys, os import sys, os
import pandas as pd import pandas as pd
import numpy as np import numpy as np
import re
#from varname import nameof #from varname import nameof
import argparse
#%% end of variable assignment for input and output files
#======================================================================= #=======================================================================
#%% function/methd to combine dfs #%% specify input and curr dir
homedir = os.path.expanduser('~')
def detect_common_cols (df1, df2): # set working dir
""" os.getcwd()
Detect comm_valson cols os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
@param df1: df # FIXME: local imports
@type df1: pandas df #from combining import combine_dfs_with_checks
from combining_FIXME import detect_common_cols
@param df2: df
@type df2: pandas df
@return: comm_valson cols
@type: list
"""
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
print('Length of comm_cols:', len(common_cols)
, '\nmerging column/s:', common_cols
, '\ntype:', type(common_cols)
, '\ndtypes in merging columns:\n', df1[common_cols].dtypes)
return common_cols
def combine_dfs_with_checks(df1, df2, my_join = 'outer'):
"""
Combine 2 dfs by finding merging columns automatically
@param df1: data frame
@type df1: pandas df
@param df2: data frame
@type df2: pandas df
@my_join: join type for merging
@type my_join: string
@return: combined_df
@type: pandas df
"""
print('Finding comm_cols and merging cols:'
,'\n=========================================================')
common_cols = np.intersect1d(df1.columns, df2.columns).tolist()
print('Length of comm_cols:', len(common_cols)
, '\nmerging column/s:', common_cols
, '\ntype:', type(common_cols))
#print('\ndtypes in merging columns:\n', df1[common_cols].dtypes)
print('selecting consistent dtypes for merging (object i.e string)')
#merging_cols = df1[comm_valson_cols].select_dtypes(include = [object]).columns.tolist()
#merging_cols = df1[comm_valson_cols].select_dtypes(include = ['int64']).columns.tolist()
merging_cols = common_cols.copy()
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols)
, '\n=========================================================')
#========================
# merge 1 (combined_df)
# concatenating 2dfs:
# df1, df2
#========================
# checking cross-over of mutations in the two dfs to merge
ndiff_1 = df1[merging_cols].squeeze().isin(df2[merging_cols].squeeze()).sum()
ndiff1 = df1.shape[0] - ndiff_1
print('There are', ndiff1, 'unmatched mutations in left df')
#missing_mutinfo = df1[~left_df['mutationinformation'].isin(df2['mutationinformation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
ndiff_2 = df2[merging_cols].squeeze().isin(df1[merging_cols].squeeze()).sum()
ndiff2 = df2.shape[0] - ndiff_2
print('There are', ndiff2, 'unmatched mutations in right_df')
#comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
#comm_vals_count = len(comm_vals)
#print('length of comm_valson values:', comm_vals_count , '\ntype:', type(comm_vals_count))
#========================
# merging dfs & sanity checks
#========================
fail = False
print('combing with:', my_join)
comb_df = pd.merge(df1, df2, on = merging_cols, how = my_join)
expected_cols = df1.shape[1] + df2.shape[1] - nmerging_cols
if my_join == 'right':
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
expected_rows = df2_nd.shape[0]
if my_join == 'left':
expected_rows = df1.shape[0]
#if my_join == 'inner':
# expected_rows = comm_vals_count
#if my_join == 'outer':
# df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
# df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
# expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - comm_vals_count
if my_join == ('inner' or 'outer') and len(merging_cols) > 1:
#comm_vals = np.intersect1d(df1['mutationinformation'], df2['mutationinformation'])
print('length of merging_cols > 1, therefore omitting row checks')
combined_df = comb_df.copy()
expected_rows = len(combined_df)
else:
comm_vals = np.intersect1d(df1[merging_cols], df2[merging_cols])
print('length of merging_cols == 1, calculating expected rows in merged_df')
combined_df = comb_df.drop_duplicates(subset = merging_cols, keep ='first')
if my_join == 'inner':
expected_rows = len(comm_vals)
if my_join == 'outer':
df1_nd = df1.drop_duplicates(merging_cols, keep = 'first')
df2_nd = df2.drop_duplicates(merging_cols, keep = 'first')
expected_rows = df1_nd.shape[0] + df2_nd.shape[0] - len(comm_vals)
if len(combined_df) == expected_rows and len(combined_df.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df.columns))
if fail:
sys.exit()
#if clean:
#foo = combined_df2.filter(regex = r'.*_x|_y', axis = 1)
#print(foo.columns)
#print('Detected duplicate cols with suffix: _x _y'
# , '\Dropping duplicate cols and cleaning')
# drop position col containing suffix '_y' and then rename col without suffix
combined_df_clean = combined_df.drop(combined_df.filter(regex = r'.*_y').columns, axis = 1)
combined_df_clean.rename(columns=lambda x: re.sub('_x$','', x), inplace = True)
return combined_df_clean
#%% end of function
#======================================================================= #=======================================================================
#%% command line args
#arg_parser = argparse.ArgumentParser()
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
#args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#drug = args.drug
#gene = args.gene
#======
# dirs
#======
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'input'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_dssp = gene.lower() + '_dssp.csv'
in_filename_kd = gene.lower() + '_kd.csv'
in_filename_rd = gene.lower() + '_rd.csv'
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
infile_mcsm = outdir + '/' + in_filename_mcsm
infile_foldx = outdir + '/' + in_filename_foldx
infile_dssp = outdir + '/' + in_filename_dssp
infile_kd = outdir + '/' + in_filename_kd
infile_rd = outdir + '/' + in_filename_rd
infile_snpinfo = indir + '/' + in_filename_snpinfo
infile_afor = outdir + '/' + in_filename_afor
infile_afor_kin = outdir + '/' + in_filename_afor_kin
print('\nInput path:', outdir
, '\nInput filename mcsm:', infile_mcsm
, '\nInput filename foldx:', infile_foldx
, '\nInput filename dssp:', infile_dssp
, '\nInput filename kd:', infile_kd
, '\nInput filename rd', infile_rd
, '\nInput filename snp info:', infile_snpinfo
, '\nInput filename af or:', infile_afor
, '\nInput filename afor kinship:', infile_afor_kin
, '\n============================================================')
#=======
# output
#=======
out_filename_comb = gene.lower() + '_all_params.csv'
outfile_comb = outdir + '/' + out_filename_comb
print('Output filename:', outfile_comb
, '\n============================================================')
o_join = 'outer'
l_join = 'left'
r_join = 'right'
i_join = 'inner'
# end of variable assignment for input and output files
#&%%====================================================================
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
mcsm_df.columns = mcsm_df.columns.str.lower()
foldx_df = pd.read_csv(infile_foldx , sep = ',')
print('==================================='
, '\nFirst merge: mcsm + foldx'
, '\n===================================')
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = o_join)
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
mcsm_foldx_dfs = pd.merge(mcsm_df, foldx_df, on = merging_cols_m1, how = 'outer')
ncols_m1 = len(mcsm_foldx_dfs.columns)
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print('==================================='
, '\nSecond merge: dssp + kd'
, '\n===================================')
dssp_df = pd.read_csv(infile_dssp, sep = ',')
kd_df = pd.read_csv(infile_kd, sep = ',')
rd_df = pd.read_csv(infile_rd, sep = ',')
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
dssp_kd_dfs = pd.merge(dssp_df, kd_df, on = merging_cols_m2, how = 'outer')
print('==================================='
, '\nThird merge: dssp_kd_dfs + rd_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = o_join)
merging_cols_m3 = detect_common_cols(dssp_df, kd_df)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs, rd_df, on = merging_cols_m3, how = 'outer')
ncols_m3 = len(dssp_kd_rd_dfs.columns)
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print('==================================='
, '\nFourth merge: First merge + Third merge'
, '\n===================================')
#combined_dfs = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = i_join)# gives wrong!
merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = 'inner')
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nnrows combined_df:', len(combined_df)
, '\ncols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual df merges')
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#%% OR combining
afor_df = pd.read_csv(infile_afor, sep = ',')
afor_df.columns = afor_df.columns.str.lower()
if afor_df['mutation'].shape[0] == afor_df['mutation'].nunique():
print('No duplicate muts detected in afor_df')
else:
print('Dropping duplicate muts detected in afor_df')
afor_df = afor_df.drop_duplicates(subset = 'mutation', keep = 'first')
snpinfo_df_all = pd.read_csv(infile_snpinfo, sep = ',')
snpinfo_df = snpinfo_df_all[['mutation', 'mutationinformation']]
if snpinfo_df['mutation'].shape[0] == snpinfo_df['mutation'].nunique():
print('No duplicate muts detected in snpinfo_df')
else:
dups = snpinfo_df['mutation'].duplicated().sum()
print( dups, 'Duplicate muts detected in snpinfo_df'
, '\nDim:', snpinfo_df.shape)
print('Dropping duplicate muts')
snpinfo_df = snpinfo_df.drop_duplicates(subset = 'mutation', keep = 'first')
print('Dim:', snpinfo_df.shape)
print('==================================='
, '\nFifth merge: afor_df + snpinfo_df'
, '\n===================================')
merging_cols_m5 = detect_common_cols(afor_df, snpinfo_df)
afor_snpinfo_dfs = pd.merge(afor_df, snpinfo_df, on = merging_cols_m5, how = 'left')
if len(afor_snpinfo_dfs) == afor_df.shape[0]:
print('PASS: succesfully combined with left join'
, '\nDim of df1:', afor_df.shape
, '\nDim of df2:', snpinfo_df.shape)
else:
sys.exit('FAIL: unsuccessful merge')
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
print('==================================='
, '\nSixth merge: afor_snpinfo_dfs + afor_kin_df'
, '\n===================================')
merging_cols_m6 = detect_common_cols(afor_snpinfo_dfs, afor_kin_df)
print('Dim of df1:', afor_snpinfo_dfs.shape
, '\nDim of df2:', afor_kin_df.shape
, '\nno. of merging_cols:', len(merging_cols_m6))
ors_df = pd.merge(afor_snpinfo_dfs, afor_kin_df, on = merging_cols_m6, how = 'outer')
print('Dim of ors_df:', ors_df.shape)
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
print('==================================='
, '\nSeventh merge: combined_df + ors_df'
, '\n===================================')
merging_cols_m7 = detect_common_cols(combined_df, ors_df)
print('Dim of df1:', combined_df.shape
, '\nDim of df2:', ors_df.shape
, '\nno. of merging_cols:', len(merging_cols_m7))
print('checking mutations in the two dfs:'
, '\nmuts in df1 but NOT in df2:'
, combined_df['mutationinformation'].isin(ors_df['mutationinformation']).sum()
, '\nmuts in df2 but NOT in df1:'
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df['mutationinformation']) )
#combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'outer') # FIXME
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'left')
outdf_expected_rows = len(combined_df)
outdf_expected_cols = len(combined_df.columns) + len(ors_df.columns) - len(merging_cols_m7)
print('\nDim of combined_df_all:', combined_df_all.shape
, '\nwith join type: ????')
if combined_df_all.shape[1] == outdf_expected_cols:
print('combined_df has expected no. of cols')
if combined_df_all.shape[0] == outdf_expected_rows:
print('combined_df has expected no. of rows')
else:
print('WARNING: nrows discrepancy noted'
, '\nFIX IT')
print ('thing finished')
#%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# write csv
combined_df_all.to_csv(outfile_comb, index = False)
#=======================================================================
#%% incase you FIX the the function: combine_dfs_with_checks
#def main():
# print('Reading input files:')
#mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
#mcsm_df.columns = mcsm_df.columns.str.lower()
#foldx_df = pd.read_csv(infile_foldx , sep = ',')
#dssp_df = pd.read_csv(infile_dssp, sep = ',')
#dssp_df.columns = dssp_df.columns.str.lower()
#kd_df = pd.read_csv(infile_kd, sep = ',')
#kd_df.columns = kd_df.columns.str.lower()
#rd_df = pd.read_csv(infile_kd, sep = ',')
#if __name__ == '__main__':
# main()
#=======================================================================
#%% end of script

View file

@ -1,303 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
#from varname import nameof
import argparse
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# local imports
from combining_dfs import combine_dfs_with_checks
from combining_dfs import detect_common_cols
#=======================================================================
#%% command line args
#arg_parser = argparse.ArgumentParser()
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
#args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#drug = args.drug
#gene = args.gene
#======
# dirs
#======
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'input'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
#in_filename_linking = gene.lower() + '_linking_df.csv'
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_dssp = gene.lower() + '_dssp.csv'
in_filename_kd = gene.lower() + '_kd.csv'
in_filename_rd = gene.lower() + '_rd.csv'
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
#infile_linking = outdir + '/' + in_filename_linking
infile_mcsm = outdir + '/' + in_filename_mcsm
infile_foldx = outdir + '/' + in_filename_foldx
infile_dssp = outdir + '/' + in_filename_dssp
infile_kd = outdir + '/' + in_filename_kd
infile_rd = outdir + '/' + in_filename_rd
infile_snpinfo = indir + '/' + in_filename_snpinfo
infile_afor = outdir + '/' + in_filename_afor
infile_afor_kin = outdir + '/' + in_filename_afor_kin
print('\nInput path:', outdir
, '\nInput filename mcsm:', infile_mcsm
, '\nInput filename foldx:', infile_foldx
, '\nInput filename dssp:', infile_dssp
, '\nInput filename kd:', infile_kd
, '\nInput filename rd', infile_rd
, '\nInput filename snp info:', infile_snpinfo
, '\nInput filename af or:', infile_afor
, '\nInput filename afor kinship:', infile_afor_kin
, '\n============================================================')
#=======
# output
#=======
out_filename_comb = gene.lower() + '_all_params.csv'
outfile_comb = outdir + '/' + out_filename_comb
print('Output filename:', outfile_comb
, '\n============================================================')
o_join = 'outer'
l_join = 'left'
r_join = 'right'
i_join = 'inner'
#del(in_filename_dssp, in_filename_foldx)
# end of variable assignment for input and output files
#=======================================================================
# call function to detect common cols
# FIXME: do the OR combining in the end to iron out any problems
# Couldn't run the function combin
#=======================================================================
def main():
print('Reading input files:')
#dssp_df = pd.read_csv(infile_dssp, sep = ',')
#dssp_df.columns = dssp_df.columns.str.lower()
#kd_df = pd.read_csv(infile_kd, sep = ',')
#kd_df.columns = kd_df.columns.str.lower()
# print('Dimension left df:', dssp_df.shape
# , '\nDimension right_df:', kd_df.shape
# , '\njoin type:', o_join
# , '\n=========================================================')
# detect common cols
#merging_cols = detect_common_cols(dssp_df, kd_df)
#print('Length of common cols:', len(merging_cols)
# , '\nmerging column/s:', merging_cols, 'type:', type(merging_cols)
# , '\ndtypes in merging columns:', dssp_df[merging_cols].dtypes)
#combined_df1 = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
#print('Dimensions of combined df:', combined_df1.shape
# , '\nsneak peak:', combined_df1.head()
# , '\ndtypes in cols:\n', combined_df1.dtypes)
#if __name__ == '__main__':
# main()
#=======================================================================
#%% end of script
#hardcoded test
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
mcsm_df.columns = mcsm_df.columns.str.lower()
foldx_df = pd.read_csv(infile_foldx , sep = ',')
print('==================================='
, '\nFirst merge: mcsm + foldx'
, '\n===================================')
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = o_join)
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
mcsm_foldx_dfs = pd.merge(mcsm_df, foldx_df, on = merging_cols_m1, how = 'outer')
ncols_m1 = len(mcsm_foldx_dfs.columns)
print('==================================='
, '\nSecond merge: dssp + kd'
, '\n===================================')
dssp_df = pd.read_csv(infile_dssp, sep = ',')
kd_df = pd.read_csv(infile_kd, sep = ',')
rd_df = pd.read_csv(infile_rd, sep = ',')
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
dssp_kd_dfs = pd.merge(dssp_df, kd_df, on = merging_cols_m2, how = 'outer')
print('==================================='
, '\nThird merge: dssp_kd_dfs + rd_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = o_join)
merging_cols_m3 = detect_common_cols(dssp_df, kd_df)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs, rd_df, on = merging_cols_m3, how = 'outer')
ncols_m3 = len(dssp_kd_rd_dfs.columns)
print('==================================='
, '\nFourth merge: First merge + Third merge'
, '\n===================================')
#combined_dfs = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = i_join)# gives wrong!
merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = 'inner')
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nnrows combined_df:', len(combined_df)
, '\ncols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual df merges')
#%% OR combining
afor_df = pd.read_csv(infile_afor, sep = ',')
afor_df.columns = afor_df.columns.str.lower()
if afor_df['mutation'].shape[0] == afor_df['mutation'].nunique():
print('No duplicate muts detected in afor_df')
else:
print('Dropping duplicate muts detected in afor_df')
afor_df = afor_df.drop_duplicates(subset = 'mutation', keep = 'first')
snpinfo_df_all = pd.read_csv(infile_snpinfo, sep = ',')
snpinfo_df = snpinfo_df_all[['mutation', 'mutationinformation']]
if snpinfo_df['mutation'].shape[0] == snpinfo_df['mutation'].nunique():
print('No duplicate muts detected in snpinfo_df')
else:
dups = snpinfo_df['mutation'].duplicated().sum()
print( dups, 'Duplicate muts detected in snpinfo_df'
, '\nDim:', snpinfo_df.shape)
print('Dropping duplicate muts')
snpinfo_df = snpinfo_df.drop_duplicates(subset = 'mutation', keep = 'first')
print('Dim:', snpinfo_df.shape)
print('==================================='
, '\nFifth merge: afor_df + snpinfo_df'
, '\n===================================')
merging_cols_m5 = detect_common_cols(afor_df, snpinfo_df)
afor_snpinfo_dfs = pd.merge(afor_df, snpinfo_df, on = merging_cols_m5, how = 'left')
#afor_df.shape
#snpinfo_df.shape
if len(afor_snpinfo_dfs) == afor_df.shape[0]:
print('PASS: succesfully combined with left join')
else:
sys.exit('FAIL: unsuccessful merge')
#%%
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
print('==================================='
, '\nSixth merge: afor_snpinfo_dfs + afor_kin_df'
, '\n===================================')
merging_cols_m6 = detect_common_cols(afor_snpinfo_dfs, afor_kin_df)
print('Dim of df1:', afor_snpinfo_dfs.shape
, '\nDim of df2:', afor_kin_df.shape
, '\nno. of merging_cols:', len(merging_cols_m6))
ors_df = pd.merge(afor_snpinfo_dfs, afor_kin_df, on = merging_cols_m6, how = 'outer')
print('Dim of ors_df:', ors_df.shape)
#%%
print('==================================='
, '\nSeventh merge: combined_df + ors_df'
, '\n===================================')
merging_cols_m7 = detect_common_cols(combined_df, ors_df)
print('Dim of df1:', combined_df.shape
, '\nDim of df2:', ors_df.shape
, '\nno. of merging_cols:', len(merging_cols_m7))
print('checking mutations in the two dfs:'
, '\nmuts in df1 but NOT in df2:'
, combined_df['mutationinformation'].isin(ors_df['mutationinformation']).sum()
, 'muts in df2 but NOT in df1:'
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df['mutationinformation']) )
#combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'outer') # FIXME
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'left')
outdf_expected_rows = len(combined_df)
outdf_expected_cols = len(combined_df.columns) + len(ors_df.columns) - len(merging_cols_m7)
print('\nDim of combined_df_all:', combined_df_all.shape)
if combined_df_all.shape[1] == outdf_expected_cols:
print('combined_df has expected no. of cols')
if combined_df_all.shape[0] == outdf_expected_rows:
print('combined_df has expected no. of rows')
else:
print('WARNING: nrows discrepancy noted'
, '\nFIX IT')
print ('thing finished')
#%% write csv
combined_df_all.to_csv(outfile_comb, index = False)