combined logolas and raw data msa plots into 1 script and called it the same as before logoP_msa.R

This commit is contained in:
Tanushree Tunstall 2022-01-26 11:06:04 +00:00
parent 6365fff858
commit 92af9fd565

View file

@ -1,14 +1,17 @@
source("~/git/LSHTM_analysis/scripts/plotting/Header_TT.R")
source("~/git/LSHTM_analysis/scripts/functions/ed_pfm_data.R")
###########################################
PlotLogolasMSA <- function(msaSeq_mut # chr vector
, msaSeq_wt # chr vector
, msa_method = c("custom") # will be c("EDLogo", "Logo)#
, ED_score = c("log")# can be: "log-odds", "diff", "probKL", "ratio", "unscaled_log", "wKL"
#, msa_method = c("custom") # can be "bits", "probability" or "custom"
, logo_type = c("EDLogo") #"bits_pfm", "probability_pfm", "bits_raw", "probability_raw") # can be "bits", "probability" or "custom"
, EDScore_type = c("log") # see if this relevant, or source function should have it!
, bg_prob = NULL
, my_logo_col = "chemistry"
, plot_positions
, y_breaks
, x_lab_mut = "nsSNP-position"
, y_lab_mut = ""
, y_lab_mut
, x_ats = 13 # text size
, x_tangle = 90 # text angle
, x_axis_offset = 0.05 # dist b/w y-axis and plot start
@ -25,115 +28,148 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
)
{
#''' Can be put into a separate EDData plot function'''
dash_control = list()
dash_control_default <- list(concentration = NULL, mode = NULL,
optmethod = "mixEM", sample_weights = NULL, verbose = FALSE,
bf = TRUE, pi_init = NULL, squarem_control = list(),
dash_control = list(), reportcov = FALSE)
dash_control <- modifyList(dash_control_default, dash_control)
# Get PFM matrix for mut and wt MSA provided
data_ed = DataED_PFM(msaSeq_mut
, msaSeq_wt
, ED_score = EDScore_type)
names(data_ed)
#"pfm_mutM" "pfm_mut_scaledM" "combED_mutM" "pfm_wtM" "pfm_wt_scaledM" "combED_wtM"
if (logo_type == "EDLogo"){
msa_method = "custom"
y_label = "Enrichment Score"
data_logo_mut = data_ed[['combED_mutM']]
data_logo_wt = data_ed[['combED_wtM']]
############################################
# Data processing for logo plot for nsSNPS
###########################################
cat("\nLength of MSA", length(msaSeq_mut)
, "\nlength of WT seq:", length(msaSeq_wt))
msa_pos = as.numeric(colnames(data_logo_mut))
wt_pos = as.numeric(colnames(data_logo_wt))
cat("\n======================="
, "\nPlotting entire MSA"
, "\n========================")
# Construct Y-axis for MSA mut plot:
cat("\nCalculating y-axis for MSA mut plot")
#--------------------------
# Getting PFM: mutant MSA
#--------------------------
pfm_mut <- Biostrings::consensusMatrix(msaSeq_mut)
colnames(pfm_mut) <- 1:dim(pfm_mut)[2]
pfm_mut_scaled <- do.call(dash, append(list(comp_data = pfm_mut),
dash_control))$posmean
if ( missing(y_breaks) ){
# Y-axis: Calculating
cat("\n----------------------------------------"
, "\nY-axis being generated from data"
, "\n-----------------------------------------")
ylim_low <- floor(min(data_logo_mut)); ylim_low
if( ylim_low == 0){
ylim_low = ylim_low
cat("\nY-axis lower limit:", ylim_low)
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
logo_mut_h = get_logo_heights(pfm_mut_scaled
, bg = bg_prob
, score = ED_score)
ylim_up <- ceiling(max(data_logo_mut)) + 4; ylim_up
cat("\nY-axis upper limit:", ylim_up)
y_rup = seq(0, ylim_up, by = 2); y_rup
}else{
ylim_low = ylim_low + (-0.5)
cat("\nY-axis lower limit is <0:", ylim_low)
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
cat("\nGetting logo_heights from Logolas package...")
pos_mutM = logo_mut_h[['table_mat_pos_norm']]; pos_mutM
pos_mutS = logo_mut_h[['pos_ic']]; pos_mutS
pos_mutED = t(pos_mutS*t(pos_mutM)); pos_mutED
neg_mutM = logo_mut_h[['table_mat_neg_norm']]*(-1)
neg_mutS = logo_mut_h[['neg_ic']]; neg_mutS
neg_mutED = t(neg_mutS*t(neg_mutM)); neg_mutED
if (length(pos_mutS) && length(neg_mutS) == dim(pfm_mut)[2]){
cat("\nPASS: pfm calculated successfully including scaled matrix"
, "\nDim of pfm matrix:", dim(pfm_mut)[1], dim(pfm_mut)[2])
ylim_up <- ceiling(max(data_logo_mut)) + 3; ylim_up
cat("\nY-axis upper limit:", ylim_up)
y_rup = seq(0, ylim_up, by = 3); y_rup
}
#ylim_scale <- unique(sort(c(y_rlow, y_rup, ylim_up))); ylim_scale
ylim_scale <- unique(sort(c(y_rlow, y_rup))); ylim_scale
cat("\nY-axis generated: see below\n"
, ylim_scale)
}else{
# Y-axis: User provided
cat("\n--------------------------------"
, "\nUsing y-axis:: User provided"
,"\n---------------------------------")
ylim_scale = sort(y_breaks)
ylim_low = min(ylim_scale); ylim_low
ylim_up = max(ylim_scale); ylim_up
}
combED_mutM = pos_mutED + neg_mutED
# Construct the x-axis: mutant MSA
msa_all_pos = as.numeric(colnames(combED_mutM))
#---------------------
# Getting PFM: WT
#---------------------
pfm_wt <- Biostrings::consensusMatrix(msaSeq_wt)
colnames(pfm_wt) <- 1:dim(pfm_wt)[2]
pfm_wt_scaled <- do.call(dash, append(list(comp_data = pfm_wt),
dash_control))$posmean
logo_wt_h = get_logo_heights(pfm_wt_scaled
, bg = bg_prob
, score = ED_score)
pos_wtM = logo_wt_h[['table_mat_pos_norm']]; pos_wtM
pos_wtS = logo_wt_h[['pos_ic']]; pos_wtS
pos_wtED = t(pos_wtS*t(pos_wtM)); pos_wtED
neg_wtM = logo_wt_h[['table_mat_neg_norm']]*(-1)
neg_wtS = logo_wt_h[['neg_ic']]; neg_wtS
neg_wtED = t(neg_wtS*t(neg_wtM)); neg_wtED
if (length(pos_wtS) && length(neg_wtS) == dim(pfm_wt)[2]){
cat("\nPASS: pfm calculated successfully including scaled matrix"
, "\nDim of pfm matrix:", dim(pfm_wt)[1], dim(pfm_wt)[2])
}
combED_wtM = pos_wtED + neg_wtED
if (logo_type == "bits_pfm"){
msa_method = "bits"
y_label = "Bits (PFM)"
data_logo_mut = data_ed[['pfm_mut_scaledM']]
data_logo_wt = data_ed[['pfm_wtM']]
# Construct the x-axis: mutant MSA
wt_all_pos = as.numeric(colnames(combED_wtM))
msa_pos = as.numeric(colnames(data_logo_mut))
wt_pos = as.numeric(colnames(data_logo_wt))
}
if (logo_type == "probability_pfm"){
msa_method = "probability"
y_label = "Probability (PFM)"
data_logo_mut = data_ed[['pfm_mut_scaledM']]
data_logo_wt = data_ed[['pfm_wtM']]
msa_pos = as.numeric(colnames(data_logo_mut))
wt_pos = as.numeric(colnames(data_logo_wt))
}
if (logo_type == "bits_raw"){
msa_method = "bits"
y_label = "Bits"
data_logo_mut = msaSeq_mut
msa_interim = sapply(data_logo_mut, function(x) unlist(strsplit(x,"")))
msa_interimDF = data.frame(msa_interim)
msa_pos = as.numeric(rownames(msa_interimDF))
data_logo_wt = msaSeq_wt
wt_interim = sapply(data_logo_wt, function(x) unlist(strsplit(x,"")))
wt_interimDF = data.frame(wt_interim)
wt_pos = as.numeric(rownames(wt_interimDF))
}
if (logo_type == "probability_raw"){
msa_method = "probability"
y_label = "Probability"
data_logo_mut = msaSeq_mut
msa_interim = sapply(data_logo_mut, function(x) unlist(strsplit(x,"")))
msa_interimDF = data.frame(msa_interim)
msa_pos = as.numeric(rownames(msa_interimDF))
data_logo_wt = msaSeq_wt
wt_interim = sapply(data_logo_wt, function(x) unlist(strsplit(x,"")))
wt_interimDF = data.frame(wt_interim)
wt_pos = as.numeric(rownames(wt_interimDF))
}
#################################################################################
# param: plot_position
#################################################################################
if(missing(plot_positions)){
#------------------------------
# MSA mut: All, no filtering
#-------------------------------
#================================
# NO filtering of positions
#================================
#---------
# MSA mut
#---------
cat("\n==========================================="
, "\nGenerated PFM mut: No filtering"
, "\n===========================================")
plot_mut_edM = combED_mutM
plot_mut_edM = data_logo_mut
#------------------------------
# MSA WT: All, no filtering
#-------------------------------
#---------
# MSA WT
#---------
cat("\n==========================================="
, "\nGenerated PFM WT: No filtering"
, "\n===========================================")
plot_wt_edM = combED_wtM
plot_wt_edM = data_logo_wt
}else{
#------------------------------
# PFM mut: Filtered positions
#-------------------------------
#================================
# Filtering of positions
#================================
cat("\n==========================================="
, "\nGenerating PFM MSA: filtered positions"
, "\n==========================================="
@ -146,17 +182,56 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
cat("\nPlotting positions sorted:\n"
, plot_positions)
if ( all(plot_positions%in%msa_all_pos) && all(plot_positions%in%wt_all_pos) ){
if ( all(plot_positions%in%msa_pos) && all(plot_positions%in%wt_pos) ){
cat("\nAll positions within range"
, "\nFiltering positions as specified..."
, "\nNo. of positions in plot:", length(plot_positions))
i_extract = plot_positions
plot_mut_edM = combED_mutM[, i_extract]
plot_wt_edM = combED_wtM[, i_extract]
#plot_mut_edM = data_logo_mut[, i_extract]
#plot_wt_edM = data_logo_wt[, i_extract]
#-----------------
# PFM: mut + wt
#------------------
if (logo_type%in%c("EDLogo", "bits_pfm", "probability_pfm")){
plot_mut_edM = data_logo_mut[, i_extract]
plot_wt_edM = data_logo_wt[, i_extract]
}
if (logo_type%in%c("bits_raw", "probability_raw")){
#--------
# Mut
#--------
dfP1 = msa_interimDF[i_extract,]
dfP1 = data.frame(t(dfP1))
names(dfP1) = i_extract
cols_to_paste = names(dfP1)
dfP1['chosen_seq'] = apply(dfP1[, cols_to_paste]
, 1
, paste, sep = ''
, collapse = "")
plot_mut_edM = dfP1$chosen_seq
#--------
# WT
#--------
dfP2 = wt_interimDF[i_extract,]
dfP2 = data.frame(t(dfP2))
names(dfP2) = i_extract
cols_to_paste2 = names(dfP2)
dfP2['chosen_seq'] = apply( dfP2[, cols_to_paste2]
, 1
, paste, sep = ''
, collapse = "")
plot_wt_edM = dfP2$chosen_seq
}
}else{
cat("\nNo. of positions selected:", length(plot_positions))
i_ofr = plot_positions[!plot_positions%in%msa_all_pos]
i_ofr = plot_positions[!plot_positions%in%msa_pos]
cat("\n1 or more plot_positions out of range..."
, "\nThese are:\n", i_ofr
, "\nQuitting! Resubmit with correct plot_positions")
@ -164,60 +239,10 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
}
}
# Construct Y-axis for MSA mut plot:
cat("\nCalculating y-axis for MSA mut plot")
if (missing(y_breaks)){
# Y-axis: Calculating
cat("\n----------------------------------------"
, "\nY-axis being generated from data"
, "\n-----------------------------------------")
ylim_low <- floor(min(combED_mutM)); ylim_low
if( ylim_low == 0){
ylim_low = ylim_low
cat("\nY-axis lower limit:", ylim_low)
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
ylim_up <- ceiling(max(combED_mutM)) + 4; ylim_up
cat("\nY-axis upper limit:", ylim_up)
y_rup = seq(0, ylim_up, by = 2); y_rup
}else{
ylim_low = ylim_low + (-0.5)
cat("\nY-axis lower limit is <0:", ylim_low)
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
ylim_up <- ceiling(max(combED_mutM)) + 3; ylim_up
cat("\nY-axis upper limit:", ylim_up)
y_rup = seq(0, ylim_up, by = 3); y_rup
}
#ylim_scale <- unique(sort(c(y_rlow, y_rup, ylim_up))); ylim_scale
ylim_scale <- unique(sort(c(y_rlow, y_rup))); ylim_scale
cat("\nY-axis generated: see below\n"
, ylim_scale)
}else{
# Y-axis: User provided
cat("\n--------------------------------"
, "\nUsing y-axis:: User provided"
,"\n---------------------------------")
ylim_scale = sort(y_breaks)
ylim_low = min(ylim_scale); ylim_low
ylim_up = max(ylim_scale); ylim_up
}
######################################
# Generating plots for muts and wt
#####################################
if (my_logo_col %in% c('clustalx','taylor')) {
cat("\nSelected colour scheme:", my_logo_col
, "\nUsing black theme\n")
@ -252,7 +277,6 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
# Mutant logo plot
#-------------------
p0 = ggseqlogo(plot_mut_edM
#, facet = "grid"
, method = msa_method
, col_scheme = my_logo_col
, seq_type = 'auto') +
@ -281,30 +305,26 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
, colour = ytt_col)
, plot.background = element_rect(fill = theme_bgc)) +
xlab(x_lab_mut) + ylab(y_lab_mut)
xlab(x_lab_mut)
if (missing(plot_positions)){
ed_mut_logo_P = p0 +
scale_x_discrete(breaks = msa_all_pos
scale_x_discrete(breaks = msa_pos
, expand = c(x_axis_offset, 0)
, labels = msa_all_pos
, limits = factor(msa_all_pos))+
scale_y_continuous(limits = c(ylim_low, ylim_up)
, breaks = ylim_scale
, expand = c(0, y_axis_offset)) +
geom_hline(yintercept = 0
, linetype = "solid"
, color = "grey"
, size = 1)
, labels = msa_pos
, limits = factor(msa_pos))
}else{
ed_mut_logo_P = p0 +
scale_x_discrete(breaks = i_extract
, expand = c(x_axis_offset_filtered, 0)
, labels = i_extract
, limits = factor(i_extract)) +
#scale_y_continuous(expand = c(0,0.09)) +
, limits = factor(i_extract))
}
if (logo_type == "EDLogo"){
ed_mut_logo_P = ed_mut_logo_P +
scale_y_continuous(limits = c(ylim_low, ylim_up)
, breaks = ylim_scale
, expand = c(0, y_axis_offset)) +
@ -314,6 +334,12 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
, size = 1)
}
if (missing(y_lab_mut)){
ed_mut_logo_P = ed_mut_logo_P + ylab(y_label)
} else{
ed_mut_logo_P = ed_mut_logo_P + ylab(y_lab_mut)
}
cat('\nDone: MSA plot for mutations')
#return(msa_mut_logoP)
PlotlogolasL[['ed_mut_logoP']] <- ed_mut_logo_P
@ -354,10 +380,10 @@ PlotLogolasMSA <- function(msaSeq_mut # chr vector
# No y-axis needed
ed_wt_logo_P = p1 +
scale_x_discrete(breaks = wt_all_pos
scale_x_discrete(breaks = wt_pos
, expand = c(x_axis_offset, 0)
, labels = wt_all_pos
, limits = factor(wt_all_pos))
, labels = wt_pos
, limits = factor(wt_pos))
}else{
ed_wt_logo_P = p1 +