extracting other params from logistic
This commit is contained in:
parent
ada205962b
commit
8f272bdc17
3 changed files with 94 additions and 31 deletions
|
@ -388,7 +388,6 @@ pvals_logistic = sapply(gene_snps_unique,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
#print(table(dst, mut))
|
#print(table(dst, mut))
|
||||||
model<-glm(dst ~ mut , family = binomial)
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
#or_logistic = exp(summary(model)$coefficients[2,1])
|
|
||||||
pval_logistic = summary(model)$coefficients[2,4]
|
pval_logistic = summary(model)$coefficients[2,4]
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
|
@ -163,7 +163,7 @@ cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_
|
||||||
# Define OR function
|
# Define OR function
|
||||||
#x = as.numeric(mut)
|
#x = as.numeric(mut)
|
||||||
#y = dst
|
#y = dst
|
||||||
my_chisq_or = function(x,y){
|
logistic_chisq_or = function(x,y){
|
||||||
tab = as.matrix(table(x,y))
|
tab = as.matrix(table(x,y))
|
||||||
a = tab[2,2]
|
a = tab[2,2]
|
||||||
if (a==0){ a<-0.5}
|
if (a==0){ a<-0.5}
|
||||||
|
@ -214,7 +214,7 @@ chisq.test(table(mut,dst))
|
||||||
fisher.test(table(mut, dst))
|
fisher.test(table(mut, dst))
|
||||||
fisher.test(table(mut, dst))$p.value
|
fisher.test(table(mut, dst))$p.value
|
||||||
fisher.test(table(mut, dst))$estimate
|
fisher.test(table(mut, dst))$estimate
|
||||||
my_chisq_or(mut,dst)
|
logistic_chisq_or(mut,dst)
|
||||||
|
|
||||||
# logistic or
|
# logistic or
|
||||||
summary(model<-glm(dst ~ mut, family = binomial))
|
summary(model<-glm(dst ~ mut, family = binomial))
|
||||||
|
@ -230,7 +230,7 @@ pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
||||||
|
|
||||||
ors = sapply(gene_snps_unique,function(m){
|
ors = sapply(gene_snps_unique,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
my_chisq_or(mut,dst)
|
logistic_chisq_or(mut,dst)
|
||||||
})
|
})
|
||||||
|
|
||||||
ors
|
ors
|
||||||
|
@ -249,15 +249,69 @@ afs = sapply(gene_snps_unique,function(m){
|
||||||
|
|
||||||
afs
|
afs
|
||||||
|
|
||||||
# logistic
|
# logistic or
|
||||||
logistic_ors = sapply(gene_snps_unique,function(m){
|
ors_logistic = sapply(gene_snps_unique,function(m){
|
||||||
mut = grepl(m,raw_data$all_muts_gene)
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
model<-glm(dst ~ mut, family = binomial)
|
model<-glm(dst ~ mut, family = binomial)
|
||||||
or_logistic = exp(summary(model)$coefficients[2,1])
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
||||||
#pval_logistic = summary(model)$coefficients[2,4]
|
#pval_logistic = summary(model)$coefficients[2,4]
|
||||||
|
#logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
#logistic_zval = summary(model)$coefficients[2,3]
|
||||||
|
#ci_mod = exp(confint(model))[2,]
|
||||||
|
#logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
#logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
})
|
})
|
||||||
logistic_ors
|
ors_logistic
|
||||||
|
head(ors_logistic); head(names(ors_logistic))
|
||||||
|
|
||||||
|
## logistic p-value
|
||||||
|
pvals_logistic = sapply(gene_snps_unique,function(m){
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
pval_logistic = summary(model)$coefficients[2,4]
|
||||||
|
})
|
||||||
|
|
||||||
|
head(pvals_logistic); head(names(pvals_logistic))
|
||||||
|
|
||||||
|
## logistic se
|
||||||
|
se_logistic = sapply(gene_snps_unique,function(m){
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
})
|
||||||
|
|
||||||
|
head(se_logistic); head(names(se_logistic))
|
||||||
|
|
||||||
|
|
||||||
|
## logistic z-value
|
||||||
|
zval_logistic = sapply(gene_snps_unique,function(m){
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
logistic_zval = summary(model)$coefficients[2,3]
|
||||||
|
})
|
||||||
|
|
||||||
|
head(zval_logistic); head(names(zval_logistic))
|
||||||
|
|
||||||
|
## logistic ci - lower bound
|
||||||
|
ci_lb_logistic = sapply(gene_snps_unique,function(m){
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
})
|
||||||
|
|
||||||
|
head(ci_lb_logistic); head(names(ci_lb_logistic))
|
||||||
|
|
||||||
|
## logistic ci - upper bound
|
||||||
|
ci_ub_logistic = sapply(gene_snps_unique,function(m){
|
||||||
|
mut = grepl(m,raw_data$all_muts_gene)
|
||||||
|
model<-glm(dst ~ mut , family = binomial)
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
|
})
|
||||||
|
|
||||||
|
head(ci_ub_logistic); head(names(ci_ub_logistic))
|
||||||
|
|
||||||
# logistic adj # Doesn't seem to make a difference
|
# logistic adj # Doesn't seem to make a difference
|
||||||
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
logistic_ors2 = sapply(gene_snps_unique,function(m){
|
||||||
|
@ -276,16 +330,35 @@ or_logistic2; pval_logistic2
|
||||||
|
|
||||||
head(logistic_ors)
|
head(logistic_ors)
|
||||||
#====================================
|
#====================================
|
||||||
|
|
||||||
# logistic
|
# logistic
|
||||||
summary(model<-glm(dst ~ mut
|
summary(model<-glm(dst ~ mut
|
||||||
, family = binomial
|
, family = binomial
|
||||||
#, control = glm.control(maxit = 1)
|
#, control = glm.control(maxit = 1)
|
||||||
#, options(warn = 1)
|
#, options(warn = 1)
|
||||||
))
|
))
|
||||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||||
|
|
||||||
|
# extract SE of the logistic model for a given snp
|
||||||
|
logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
print(paste0('SE:', logistic_se))
|
||||||
|
|
||||||
|
|
||||||
|
# extract Z of the logistic model for a given snp
|
||||||
|
logistic_zval = summary(model)$coefficients[2,3]
|
||||||
|
print(paste0('Z-value:', logistic_zval))
|
||||||
|
|
||||||
|
|
||||||
|
# extract confint interval of snp (2 steps, since the output is a named number)
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
print(paste0('CI:', ci_mod))
|
||||||
|
#logistic_ci = paste(ci_mod[["2.5 %"]], ",", ci_mod[["97.5 %"]])
|
||||||
|
|
||||||
|
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
|
|
||||||
|
print(paste0('CI_lower:', logistic_ci_lower))
|
||||||
|
print(paste0('CI_upper:', logistic_ci_upper))
|
||||||
|
|
||||||
#####################
|
#####################
|
||||||
# iterate: subset
|
# iterate: subset
|
||||||
|
@ -296,10 +369,6 @@ snps_test = c("pnca_p.trp68gly", "pnca_p.leu4ser", "pnca_p.leu159arg","pnca_p.hi
|
||||||
data = snps_test[1:2]
|
data = snps_test[1:2]
|
||||||
|
|
||||||
data
|
data
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
################# start loop
|
################# start loop
|
||||||
for (i in data){
|
for (i in data){
|
||||||
|
|
||||||
|
@ -328,9 +397,14 @@ for (i in data){
|
||||||
#, control = glm.control(maxit = 1)
|
#, control = glm.control(maxit = 1)
|
||||||
#, options(warn = 1)
|
#, options(warn = 1)
|
||||||
))
|
))
|
||||||
or_logistic_maxit = exp(summary(model)$coefficients[2,1]); print(or_logistic_maxit)
|
#, warning = perfectSeparation))
|
||||||
|
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
||||||
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
pval_logistic_maxit = summary(model)$coefficients[2,4]; print(pval_logistic_maxit)
|
||||||
|
logistic_se = summary(model)$coefficients[2,2]
|
||||||
|
logistic_zval = summary(model)$coefficients[2,3]
|
||||||
|
ci_mod = exp(confint(model))[2,]
|
||||||
|
logistic_ci_lower = ci_mod[["2.5 %"]]
|
||||||
|
logistic_ci_upper = ci_mod[["97.5 %"]]
|
||||||
#=====================
|
#=====================
|
||||||
# fishers test
|
# fishers test
|
||||||
#=====================
|
#=====================
|
||||||
|
@ -353,11 +427,9 @@ for (i in data){
|
||||||
# all output
|
# all output
|
||||||
writeLines(c(paste0("mutation:", i)
|
writeLines(c(paste0("mutation:", i)
|
||||||
, paste0("=========================")
|
, paste0("=========================")
|
||||||
, paste0("OR_logistic_maxit:", or_logistic_maxit,"--->", "P-val_logistic_maxit:", pval_logistic_maxit )
|
, paste0("or_logistic:", or_logistic,"--->", "P-val_logistic_maxit:", pval_logistic_maxit )
|
||||||
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
, paste0("OR_fisher:", or_fisher, "--->","P-val_fisher:", pval_fisher )
|
||||||
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
, paste0("Chi_sq_estimate:", est_chisq, "--->","P-val_chisq:", pval_chisq)))
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -382,4 +454,4 @@ table(dst, mut)
|
||||||
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
# https://stats.stackexchange.com/questions/259635/what-is-the-difference-using-a-fishers-exact-test-vs-a-logistic-regression-for
|
||||||
exact2x2(table(dst, mut),tsmethod="central")
|
exact2x2(table(dst, mut),tsmethod="central")
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -308,33 +308,25 @@ print('Finished writing file:', outfile
|
||||||
, '\nNo. of cols:', len(combined_or_df.columns)
|
, '\nNo. of cols:', len(combined_or_df.columns)
|
||||||
, '\n=========================================================')
|
, '\n=========================================================')
|
||||||
|
|
||||||
|
#%% practice
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
df = pd.DataFrame()
|
df = pd.DataFrame()
|
||||||
column_names = ['x','y','z','mean']
|
column_names = ['x','y','z','mean']
|
||||||
for col in column_names:
|
for col in column_names:
|
||||||
df[col] = np.random.randint(0,100, size=10000)
|
df[col] = np.random.randint(0,100, size=10000)
|
||||||
df.head()
|
df.head()
|
||||||
|
|
||||||
|
|
||||||
# drop duplicate col with dup values not necessarily colnames
|
# drop duplicate col with dup values not necessarily colnames
|
||||||
df['xdup'] = df['x']
|
df['xdup'] = df['x']
|
||||||
df
|
df
|
||||||
|
|
||||||
df.T.drop_duplicates().T
|
df = df.T.drop_duplicates().T
|
||||||
|
|
||||||
import math
|
#import math
|
||||||
math.exp(0)
|
math.exp(0)
|
||||||
|
|
||||||
df['expX'] = np.exp(df['x']) # math doesn't understand series dtype
|
df['expX'] = np.exp(df['x']) # math doesn't understand series dtype
|
||||||
df
|
df
|
||||||
|
#%%
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue