minor var bame update in ml_iterator
This commit is contained in:
parent
8079dd7b6c
commit
8bde6f0640
3 changed files with 39 additions and 37 deletions
|
@ -144,10 +144,9 @@ scoreBT_mapD = {'bts_mcc' : 'MCC'
|
|||
############################
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target
|
||||
#, skf_cv
|
||||
, sel_cv
|
||||
#, blind_test_df
|
||||
#, blind_test_target
|
||||
, blind_test_df
|
||||
, blind_test_target
|
||||
, tts_split_type
|
||||
|
||||
, resampling_type = 'none' # default
|
||||
|
@ -231,36 +230,36 @@ def MultModelsCl(input_df, target
|
|||
# Specify multiple Classification Models
|
||||
#======================================================
|
||||
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
||||
# , ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True, verbose = 3, n_estimators = 100) )
|
||||
# , ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
# , ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
# , ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
# , ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
# , ('Gaussian NB' , GaussianNB() )
|
||||
# , ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
# , ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True, verbose = 3, n_estimators = 100) )
|
||||
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
||||
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
||||
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
||||
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
||||
, ('Gaussian NB' , GaussianNB() )
|
||||
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
||||
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
||||
, ('LDA' , LinearDiscriminantAnalysis() )
|
||||
, ('Logistic Regression' , LogisticRegression(**rs) )
|
||||
# , ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
# , ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
#, ('Multinomial' , MultinomialNB() )
|
||||
# , ('Naive Bayes' , BernoulliNB() )
|
||||
# , ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
# , ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
||||
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
||||
, ('Multinomial' , MultinomialNB() )
|
||||
, ('Naive Bayes' , BernoulliNB() )
|
||||
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
||||
, ('QDA' , QuadraticDiscriminantAnalysis() )
|
||||
# , ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000, **njobs ) )
|
||||
# # , ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
# , n_estimators = 1000
|
||||
# , bootstrap = True
|
||||
# , oob_score = True
|
||||
# , **njobs
|
||||
# , **rs
|
||||
# , max_features = 'auto') )
|
||||
# , ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
# , ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
# , ('SVC' , SVC(**rs) )
|
||||
# , ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
||||
, n_estimators = 1000
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, **njobs
|
||||
, **rs
|
||||
, max_features = 'auto') )
|
||||
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
||||
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
||||
, ('SVC' , SVC(**rs) )
|
||||
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
||||
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder =False, **njobs) )
|
||||
#
|
||||
|
||||
]
|
||||
|
||||
mm_skf_scoresD = {}
|
||||
|
|
|
@ -45,10 +45,13 @@ spl_type = '70_30'
|
|||
#spl_type = '80_20'
|
||||
#spl_type = 'sl'
|
||||
|
||||
#data_type = "actual"
|
||||
data_type = "complete"
|
||||
|
||||
df2 = split_tts(df
|
||||
, data_type = 'actual'
|
||||
, data_type = data_type
|
||||
, split_type = spl_type
|
||||
, oversampling = False
|
||||
, oversampling = True
|
||||
, dst_colname = 'dst'
|
||||
, target_colname = 'dst_mode'
|
||||
, include_gene_name = True
|
||||
|
@ -67,8 +70,8 @@ Counter(df2['y'])
|
|||
Counter(df2['y_bts'])
|
||||
|
||||
|
||||
fooD = MultModelsCl(input_df = df2['X']
|
||||
, target = df2['y']
|
||||
fooD = MultModelsCl(input_df = df2['X_ros']
|
||||
, target = df2['y_ros']
|
||||
, sel_cv = skf_cv
|
||||
, run_blind_test = True
|
||||
, blind_test_df = df2['X_bts']
|
||||
|
|
|
@ -25,7 +25,7 @@ from GetMLData import *
|
|||
from SplitTTS import *
|
||||
|
||||
# param dict for getmldata()
|
||||
combined_model_paramD = {'data_combined_model' : False
|
||||
gene_model_paramD = {'data_combined_model' : False
|
||||
, 'use_or' : False
|
||||
, 'omit_all_genomic_features': False
|
||||
, 'write_maskfile' : False
|
||||
|
@ -48,7 +48,7 @@ for gene, drug in ml_gene_drugD.items():
|
|||
, '\nDrug:', drug)
|
||||
gene_low = gene.lower()
|
||||
gene_dataD[gene_low] = getmldata(gene, drug
|
||||
, **combined_model_paramD)
|
||||
, **gene_model_paramD)
|
||||
|
||||
for split_type in split_types:
|
||||
for data_type in split_data_types:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue