moved scripts to /ind_scripts & added add col to formatting script
This commit is contained in:
parent
368496733a
commit
8b1a7fc71c
6 changed files with 1129 additions and 62 deletions
340
mcsm/ind_scripts/format_results.py
Executable file
340
mcsm/ind_scripts/format_results.py
Executable file
|
@ -0,0 +1,340 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
#=======================================================================
|
||||||
|
#TASK:
|
||||||
|
#=======================================================================
|
||||||
|
#%% load packages
|
||||||
|
import os,sys
|
||||||
|
import subprocess
|
||||||
|
import argparse
|
||||||
|
#import requests
|
||||||
|
import re
|
||||||
|
#import time
|
||||||
|
import pandas as pd
|
||||||
|
from pandas.api.types import is_string_dtype
|
||||||
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
import numpy as np
|
||||||
|
from mcsm import *
|
||||||
|
|
||||||
|
#=======================================================================
|
||||||
|
#%% specify input and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/mcsm')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
|
||||||
|
drug = 'isoniazid'
|
||||||
|
gene = 'KatG'
|
||||||
|
|
||||||
|
#drug = args.drug
|
||||||
|
#gene = args.gene
|
||||||
|
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input:
|
||||||
|
#=======
|
||||||
|
# 1) result_urls (from outdir)
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
in_filename = gene.lower() + '_mcsm_output.csv' #(outfile, from mcsm_results.py)
|
||||||
|
infile = outdir + '/' + in_filename
|
||||||
|
print('Input filename:', in_filename
|
||||||
|
, '\nInput path(from output dir):', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
out_filename = gene.lower() + '_complex_mcsm_results.csv'
|
||||||
|
outfile = outdir + '/' + out_filename
|
||||||
|
print('Output filename:', out_filename
|
||||||
|
, '\nOutput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
#%%=====================================================================
|
||||||
|
def format_mcsm_output(mcsm_outputcsv):
|
||||||
|
"""
|
||||||
|
@param mcsm_outputcsv: file containing mcsm results for all muts
|
||||||
|
which is the result of build_result_dict() being called for each
|
||||||
|
mutation and then converting to a pandas df and output as csv.
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@return formatted mcsm output
|
||||||
|
@type pandas df
|
||||||
|
|
||||||
|
"""
|
||||||
|
#############
|
||||||
|
# Read file
|
||||||
|
#############
|
||||||
|
mcsm_data = pd.read_csv(mcsm_outputcsv, sep = ',')
|
||||||
|
dforig_shape = mcsm_data.shape
|
||||||
|
print('dimensions of input file:', dforig_shape)
|
||||||
|
|
||||||
|
#############
|
||||||
|
# rename cols
|
||||||
|
#############
|
||||||
|
# format colnames: all lowercase, remove spaces and use '_' to join
|
||||||
|
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
|
||||||
|
, '\n===================================================================')
|
||||||
|
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog' # relevant info from this col will be extracted and the column discarded
|
||||||
|
, 'Mutation information': 'mutation_information' # {wild_type}<position>{mutant_type}
|
||||||
|
, 'Wild-type': 'wild_type' # one letter amino acid code
|
||||||
|
, 'Position': 'position' # number
|
||||||
|
, 'Mutant-type': 'mutant_type' # one letter amino acid code
|
||||||
|
, 'Chain': 'chain' # single letter (caps)
|
||||||
|
, 'Ligand ID': 'ligand_id' # 3-letter code
|
||||||
|
, 'Distance to ligand': 'ligand_distance' # angstroms
|
||||||
|
, 'DUET stability change': 'duet_stability_change'} # in kcal/mol
|
||||||
|
|
||||||
|
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
|
||||||
|
#%%===========================================================================
|
||||||
|
#################################
|
||||||
|
# populate mutation_information
|
||||||
|
# col which is currently blank
|
||||||
|
#################################
|
||||||
|
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
|
||||||
|
print('Populating column : mutation_information which is currently empty\n', mcsm_data['mutation_information'])
|
||||||
|
mcsm_data['mutation_information'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str) + mcsm_data['mutant_type']
|
||||||
|
print('checking after populating:\n', mcsm_data['mutation_information']
|
||||||
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
# Remove spaces b/w pasted columns
|
||||||
|
print('removing white space within column: \mutation_information')
|
||||||
|
mcsm_data['mutation_information'] = mcsm_data['mutation_information'].str.replace(' ', '')
|
||||||
|
print('Correctly formatted column: mutation_information\n', mcsm_data['mutation_information']
|
||||||
|
, '\n===================================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# sanity check: drop dupliate muts
|
||||||
|
#############
|
||||||
|
# shouldn't exist as this should be eliminated at the time of running mcsm
|
||||||
|
print('Sanity check:'
|
||||||
|
, '\nChecking duplicate mutations')
|
||||||
|
if mcsm_data['mutation_information'].duplicated().sum() == 0:
|
||||||
|
print('PASS: No duplicate mutations detected (as expected)'
|
||||||
|
, '\nDim of data:', mcsm_data.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL (but not fatal): Duplicate mutations detected'
|
||||||
|
, '\nDim of df with duplicates:', mcsm_data.shape
|
||||||
|
, 'Removing duplicate entries')
|
||||||
|
mcsm_data = mcsm_data.drop_duplicates(['mutation_information'])
|
||||||
|
print('Dim of data after removing duplicate muts:', mcsm_data.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# Create col: duet_outcome
|
||||||
|
#############
|
||||||
|
# classification based on DUET stability values
|
||||||
|
print('Assigning col: duet_outcome based on DUET stability values')
|
||||||
|
print('Sanity check:')
|
||||||
|
# count positive values in the DUET column
|
||||||
|
c = mcsm_data[mcsm_data['duet_stability_change']>=0].count()
|
||||||
|
DUET_pos = c.get(key = 'duet_stability_change')
|
||||||
|
# Assign category based on sign (+ve : Stabilising, -ve: Destabilising, Mind the spelling (British spelling))
|
||||||
|
mcsm_data['duet_outcome'] = np.where(mcsm_data['duet_stability_change']>=0, 'Stabilising', 'Destabilising')
|
||||||
|
mcsm_data['duet_outcome'].value_counts()
|
||||||
|
if DUET_pos == mcsm_data['duet_outcome'].value_counts()['Stabilising']:
|
||||||
|
print('PASS: DUET outcome assigned correctly')
|
||||||
|
else:
|
||||||
|
print('FAIL: DUET outcome assigned incorrectly'
|
||||||
|
, '\nExpected no. of stabilising mutations:', DUET_pos
|
||||||
|
, '\nGot no. of stabilising mutations', mcsm_data['duet_outcome'].value_counts()['Stabilising']
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# Extract numeric
|
||||||
|
# part of ligand_distance col
|
||||||
|
#############
|
||||||
|
# Extract only the numeric part from col: ligand_distance
|
||||||
|
# number: '-?\d+\.?\d*'
|
||||||
|
mcsm_data['ligand_distance']
|
||||||
|
print('extracting numeric part of col: ligand_distance')
|
||||||
|
mcsm_data['ligand_distance'] = mcsm_data['ligand_distance'].str.extract('(\d+\.?\d*)')
|
||||||
|
mcsm_data['ligand_distance']
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# Create 2 columns:
|
||||||
|
# ligand_affinity_change and ligand_outcome
|
||||||
|
#############
|
||||||
|
# the numerical and categorical parts need to be extracted from column: PredAffLog
|
||||||
|
# regex used
|
||||||
|
# numerical part: '-?\d+\.?\d*'
|
||||||
|
# categorocal part: '\b(\w+ing)\b'
|
||||||
|
print('Extracting numerical and categorical parts from the col: PredAffLog')
|
||||||
|
print('to create two columns: ligand_affinity_change and ligand_outcome'
|
||||||
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
# 1) Extracting the predicted affinity change (numerical part)
|
||||||
|
mcsm_data['ligand_affinity_change'] = mcsm_data['PredAffLog'].str.extract('(-?\d+\.?\d*)', expand = True)
|
||||||
|
print(mcsm_data['ligand_affinity_change'])
|
||||||
|
|
||||||
|
# 2) Extracting the categorical part (Destabillizing and Stabilizing) using word boundary ('ing')
|
||||||
|
#aff_regex = re.compile(r'\b(\w+ing)\b')
|
||||||
|
mcsm_data['ligand_outcome']= mcsm_data['PredAffLog'].str.extract(r'(\b\w+ing\b)', expand = True)
|
||||||
|
print(mcsm_data['ligand_outcome'])
|
||||||
|
print(mcsm_data['ligand_outcome'].value_counts())
|
||||||
|
|
||||||
|
#############
|
||||||
|
# changing spelling: British
|
||||||
|
#############
|
||||||
|
# ensuring spellings are consistent
|
||||||
|
american_spl = mcsm_data['ligand_outcome'].value_counts()
|
||||||
|
print('Changing to Bristish spellings for col: ligand_outcome')
|
||||||
|
mcsm_data['ligand_outcome'].replace({'Destabilizing': 'Destabilising', 'Stabilizing': 'Stabilising'}, inplace = True)
|
||||||
|
print(mcsm_data['ligand_outcome'].value_counts())
|
||||||
|
british_spl = mcsm_data['ligand_outcome'].value_counts()
|
||||||
|
# compare series values since index will differ from spelling change
|
||||||
|
check = american_spl.values == british_spl.values
|
||||||
|
if check.all():
|
||||||
|
print('PASS: spelling change successfull'
|
||||||
|
, '\nNo. of predicted affinity changes:\n', british_spl
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL: spelling change unsucessfull'
|
||||||
|
, '\nExpected:\n', american_spl
|
||||||
|
, '\nGot:\n', british_spl
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# ensuring corrrect dtype columns
|
||||||
|
#############
|
||||||
|
# check dtype in cols
|
||||||
|
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
|
||||||
|
, '\n===================================================================')
|
||||||
|
print('Converting the following cols to numeric:'
|
||||||
|
, '\nligand_distance'
|
||||||
|
, '\nduet_stability_change'
|
||||||
|
, '\nligand_affinity_change'
|
||||||
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
# using apply method to change stabilty and affinity values to numeric
|
||||||
|
numeric_cols = ['duet_stability_change', 'ligand_affinity_change', 'ligand_distance']
|
||||||
|
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
|
||||||
|
# check dtype in cols
|
||||||
|
print('checking dtype after conversion')
|
||||||
|
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
|
||||||
|
if cols_check.all():
|
||||||
|
print('PASS: dtypes for selected cols:', numeric_cols
|
||||||
|
, '\nchanged to numeric'
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||||
|
, '\n===============================================================')
|
||||||
|
print(mcsm_data.dtypes)
|
||||||
|
#%%===========================================================================
|
||||||
|
|
||||||
|
#############
|
||||||
|
# scale duet values
|
||||||
|
#############
|
||||||
|
# Rescale values in DUET_change col b/w -1 and 1 so negative numbers
|
||||||
|
# stay neg and pos numbers stay positive
|
||||||
|
duet_min = mcsm_data['duet_stability_change'].min()
|
||||||
|
duet_max = mcsm_data['duet_stability_change'].max()
|
||||||
|
|
||||||
|
duet_scale = lambda x : x/abs(duet_min) if x < 0 else (x/duet_max if x >= 0 else 'failed')
|
||||||
|
|
||||||
|
mcsm_data['duet_scaled'] = mcsm_data['duet_stability_change'].apply(duet_scale)
|
||||||
|
print('Raw duet scores:\n', mcsm_data['duet_stability_change']
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nScaled duet scores:\n', mcsm_data['duet_scaled'])
|
||||||
|
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# scale affinity values
|
||||||
|
#############
|
||||||
|
# rescale values in affinity change col b/w -1 and 1 so negative numbers
|
||||||
|
# stay neg and pos numbers stay positive
|
||||||
|
aff_min = mcsm_data['ligand_affinity_change'].min()
|
||||||
|
aff_max = mcsm_data['ligand_affinity_change'].max()
|
||||||
|
|
||||||
|
aff_scale = lambda x : x/abs(aff_min) if x < 0 else (x/aff_max if x >= 0 else 'failed')
|
||||||
|
|
||||||
|
mcsm_data['affinity_scaled'] = mcsm_data['ligand_affinity_change'].apply(aff_scale)
|
||||||
|
print('Raw affinity scores:\n', mcsm_data['ligand_affinity_change']
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nScaled affinity scores:\n', mcsm_data['affinity_scaled'])
|
||||||
|
#=============================================================================
|
||||||
|
# Adding colname: wild_pos: sometimes useful for plotting and db
|
||||||
|
print('Creating column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str)
|
||||||
|
print(mcsm_data['wild_position'].head())
|
||||||
|
# Remove spaces b/w pasted columns
|
||||||
|
print('removing white space within column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_position'].str.replace(' ', '')
|
||||||
|
print('Correctly formatted column: wild_position\n', mcsm_data['wild_position'].head()
|
||||||
|
, '\n===================================================================')
|
||||||
|
#=============================================================================
|
||||||
|
#%% ensuring dtypes are string for the non-numeric cols
|
||||||
|
#) char cols
|
||||||
|
char_cols = ['PredAffLog', 'mutation_information', 'wild_type', 'mutant_type', 'chain'
|
||||||
|
, 'ligand_id', 'duet_outcome', 'ligand_outcome', 'wild_position']
|
||||||
|
|
||||||
|
#mcsm_data[char_cols] = mcsm_data[char_cols].astype(str)
|
||||||
|
cols_check_char = mcsm_data.select_dtypes(include='object').columns.isin(char_cols)
|
||||||
|
|
||||||
|
if cols_check_char.all():
|
||||||
|
print('PASS: dtypes for char cols:', char_cols, 'are indeed string'
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||||
|
, '\n===============================================================')
|
||||||
|
#mcsm_data['ligand_distance', 'ligand_affinity_change'].apply(is_numeric_dtype(mcsm_data['ligand_distance', 'ligand_affinity_change']))
|
||||||
|
print(mcsm_data.dtypes)
|
||||||
|
#=============================================================================
|
||||||
|
# Removing PredAff log column as it is not needed?
|
||||||
|
print('Removing col: PredAffLog since relevant info has been extracted from it')
|
||||||
|
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
|
||||||
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# sanity check before writing file
|
||||||
|
#############
|
||||||
|
expected_ncols_toadd = 5 # beware of hardcoded numbers
|
||||||
|
dforig_len = dforig_shape[1]
|
||||||
|
expected_cols = dforig_len + expected_ncols_toadd
|
||||||
|
if len(mcsm_dataf.columns) == expected_cols:
|
||||||
|
print('PASS: formatting successful'
|
||||||
|
, '\nformatted df has expected no. of cols:', expected_cols
|
||||||
|
, '\ncolnames:', mcsm_dataf.columns
|
||||||
|
, '\n----------------------------------------------------------------'
|
||||||
|
, '\ndtypes in cols:', mcsm_dataf.dtypes
|
||||||
|
, '\n----------------------------------------------------------------'
|
||||||
|
, '\norig data shape:', dforig_shape
|
||||||
|
, '\nformatted df shape:', mcsm_dataf.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL: something went wrong in formatting df'
|
||||||
|
, '\nLen of orig df:', dforig_len
|
||||||
|
, '\nExpected number of cols to add:', expected_ncols_toadd
|
||||||
|
, '\nExpected no. of cols:', expected_cols, '(', dforig_len, '+', expected_ncols_toadd, ')'
|
||||||
|
, '\nGot no. of cols:', len(mcsm_dataf.columns)
|
||||||
|
, '\nCheck formatting:'
|
||||||
|
, '\ncheck hardcoded value:', expected_ncols_toadd
|
||||||
|
, '\nis', expected_ncols_toadd, 'the no. of expected cols to add?'
|
||||||
|
, '\n===============================================================')
|
||||||
|
|
||||||
|
|
||||||
|
return mcsm_dataf
|
||||||
|
#=======================================================================
|
||||||
|
# call function
|
||||||
|
mcsm_df_formatted = format_mcsm_output(infile)
|
||||||
|
|
||||||
|
# writing file
|
||||||
|
print('Writing formatted df to csv')
|
||||||
|
mcsm_df_formatted.to_csv(outfile, index = False)
|
||||||
|
|
||||||
|
print('Finished writing file:'
|
||||||
|
, '\nFile', outfile
|
||||||
|
, '\nExpected no. of rows:', len(mcsm_df_formatted)
|
||||||
|
, '\nExpected no. of cols:', len(mcsm_df_formatted)
|
||||||
|
, '\n=============================================================')
|
||||||
|
#%%
|
||||||
|
#End of script
|
299
mcsm/ind_scripts/format_results_notdef.py
Executable file
299
mcsm/ind_scripts/format_results_notdef.py
Executable file
|
@ -0,0 +1,299 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
#=======================================================================
|
||||||
|
#TASK:
|
||||||
|
#=======================================================================
|
||||||
|
#%% load packages
|
||||||
|
import os,sys
|
||||||
|
import subprocess
|
||||||
|
import argparse
|
||||||
|
#import requests
|
||||||
|
import re
|
||||||
|
#import time
|
||||||
|
import pandas as pd
|
||||||
|
from pandas.api.types import is_string_dtype
|
||||||
|
from pandas.api.types import is_numeric_dtype
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
#=======================================================================
|
||||||
|
#%% specify input and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/mcsm')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
|
||||||
|
drug = 'rifampicin'
|
||||||
|
gene = 'rpoB'
|
||||||
|
|
||||||
|
#drug = args.drug
|
||||||
|
#gene = args.gene
|
||||||
|
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input:
|
||||||
|
#=======
|
||||||
|
# 1) result_urls (from outdir)
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
in_filename = gene.lower() + '_mcsm_output.csv' #(outfile, from mcsm_results.py)
|
||||||
|
infile = outdir + '/' + in_filename
|
||||||
|
print('Input filename:', in_filename
|
||||||
|
, '\nInput path(from output dir):', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
out_filename = gene.lower() + '_complex_mcsm_norm.csv'
|
||||||
|
outfile = outdir + '/' + out_filename
|
||||||
|
print('Output filename:', out_filename
|
||||||
|
, '\nOutput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#=======================================================================
|
||||||
|
print('Reading input file')
|
||||||
|
mcsm_data = pd.read_csv(infile, sep = ',')
|
||||||
|
|
||||||
|
mcsm_data.columns
|
||||||
|
# PredAffLog = affinity_change_log
|
||||||
|
# "DUETStability_Kcalpermol = DUET_change_kcalpermol
|
||||||
|
dforig_shape = mcsm_data.shape
|
||||||
|
print('dim of infile:', dforig_shape)
|
||||||
|
|
||||||
|
#############
|
||||||
|
# rename cols
|
||||||
|
#############
|
||||||
|
# format colnames: all lowercase, remove spaces and use '_' to join
|
||||||
|
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
|
||||||
|
, '\n===================================================================')
|
||||||
|
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog' # relevant info from this col will be extracted and the column discarded
|
||||||
|
, 'Mutation information': 'mutation_information' # {wild_type}<position>{mutant_type}
|
||||||
|
, 'Wild-type': 'wild_type' # one letter amino acid code
|
||||||
|
, 'Position': 'position' # number
|
||||||
|
, 'Mutant-type': 'mutant_type' # one letter amino acid code
|
||||||
|
, 'Chain': 'chain' # single letter (caps)
|
||||||
|
, 'Ligand ID': 'ligand_id' # 3-letter code
|
||||||
|
, 'Distance to ligand': 'ligand_distance' # angstroms
|
||||||
|
, 'DUET stability change': 'duet_stability_change'} # in kcal/mol
|
||||||
|
|
||||||
|
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
|
||||||
|
#%%===========================================================================
|
||||||
|
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
|
||||||
|
print('Populating column : mutation_information which is currently empty\n', mcsm_data['mutation_information'])
|
||||||
|
mcsm_data['mutation_information'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str) + mcsm_data['mutant_type']
|
||||||
|
print('checking after populating:\n', mcsm_data['mutation_information']
|
||||||
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
# Remove spaces b/w pasted columns
|
||||||
|
print('removing white space within column: \mutation_information')
|
||||||
|
mcsm_data['mutation_information'] = mcsm_data['mutation_information'].str.replace(' ', '')
|
||||||
|
print('Correctly formatted column: mutation_information\n', mcsm_data['mutation_information']
|
||||||
|
, '\n===================================================================')
|
||||||
|
#%% Remove whitespace from column
|
||||||
|
#orig_dtypes = mcsm_data.dtypes
|
||||||
|
#https://stackoverflow.com/questions/33788913/pythonic-efficient-way-to-strip-whitespace-from-every-pandas-data-frame-cell-tha/33789292
|
||||||
|
#mcsm_data.columns = mcsm_data.columns.str.strip()
|
||||||
|
#new_dtypes = mcsm_data.dtypes
|
||||||
|
#%%===========================================================================
|
||||||
|
# very important
|
||||||
|
print('Sanity check:'
|
||||||
|
, '\nChecking duplicate mutations')
|
||||||
|
if mcsm_data['mutation_information'].duplicated().sum() == 0:
|
||||||
|
print('PASS: No duplicate mutations detected (as expected)'
|
||||||
|
, '\nDim of data:', mcsm_data.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL (but not fatal): Duplicate mutations detected'
|
||||||
|
, '\nDim of df with duplicates:', mcsm_data.shape
|
||||||
|
, 'Removing duplicate entries')
|
||||||
|
mcsm_data = mcsm_data.drop_duplicates(['mutation_information'])
|
||||||
|
print('Dim of data after removing duplicate muts:', mcsm_data.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
# create duet_outcome column: classification based on DUET stability values
|
||||||
|
print('Assigning col: duet_outcome based on DUET stability values')
|
||||||
|
print('Sanity check:')
|
||||||
|
# count positive values in the DUET column
|
||||||
|
c = mcsm_data[mcsm_data['duet_stability_change']>=0].count()
|
||||||
|
DUET_pos = c.get(key = 'duet_stability_change')
|
||||||
|
# Assign category based on sign (+ve : Stabilising, -ve: Destabilising, Mind the spelling (British spelling))
|
||||||
|
mcsm_data['duet_outcome'] = np.where(mcsm_data['duet_stability_change']>=0, 'Stabilising', 'Destabilising')
|
||||||
|
mcsm_data['duet_outcome'].value_counts()
|
||||||
|
if DUET_pos == mcsm_data['duet_outcome'].value_counts()['Stabilising']:
|
||||||
|
print('PASS: DUET outcome assigned correctly')
|
||||||
|
else:
|
||||||
|
print('FAIL: DUET outcome assigned incorrectly'
|
||||||
|
, '\nExpected no. of stabilising mutations:', DUET_pos
|
||||||
|
, '\nGot no. of stabilising mutations', mcsm_data['duet_outcome'].value_counts()['Stabilising']
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
# Extract only the numeric part from col: ligand_distance
|
||||||
|
# number: '-?\d+\.?\d*'
|
||||||
|
mcsm_data['ligand_distance']
|
||||||
|
print('extracting numeric part of col: ligand_distance')
|
||||||
|
mcsm_data['ligand_distance'] = mcsm_data['ligand_distance'].str.extract('(\d+\.?\d*)')
|
||||||
|
mcsm_data['ligand_distance']
|
||||||
|
#%%===========================================================================
|
||||||
|
# create ligand_outcome column: classification based on affinity change values
|
||||||
|
# the numerical and categorical parts need to be extracted from column: PredAffLog
|
||||||
|
# regex used
|
||||||
|
# number: '-?\d+\.?\d*'
|
||||||
|
# category: '\b(\w+ing)\b'
|
||||||
|
print('Extracting numerical and categorical parts from the col: PredAffLog')
|
||||||
|
print('to create two columns: ligand_affinity_change and ligand_outcome'
|
||||||
|
, '\n===================================================================')
|
||||||
|
# Extracting the predicted affinity change (numerical part)
|
||||||
|
mcsm_data['ligand_affinity_change'] = mcsm_data['PredAffLog'].str.extract('(-?\d+\.?\d*)', expand = True)
|
||||||
|
print(mcsm_data['ligand_affinity_change'])
|
||||||
|
# Extracting the categorical part (Destabillizing and Stabilizing) using word boundary ('ing')
|
||||||
|
#aff_regex = re.compile(r'\b(\w+ing)\b')
|
||||||
|
mcsm_data['ligand_outcome']= mcsm_data['PredAffLog'].str.extract(r'(\b\w+ing\b)', expand = True)
|
||||||
|
print(mcsm_data['ligand_outcome'])
|
||||||
|
print(mcsm_data['ligand_outcome'].value_counts())
|
||||||
|
|
||||||
|
# ensuring spellings are consistent
|
||||||
|
american_spl = mcsm_data['ligand_outcome'].value_counts()
|
||||||
|
print('Changing to Bristish spellings for col: ligand_outcome')
|
||||||
|
mcsm_data['ligand_outcome'].replace({'Destabilizing': 'Destabilising', 'Stabilizing': 'Stabilising'}, inplace = True)
|
||||||
|
print(mcsm_data['ligand_outcome'].value_counts())
|
||||||
|
british_spl = mcsm_data['ligand_outcome'].value_counts()
|
||||||
|
# compare series values since index will differ from spelling change
|
||||||
|
check = american_spl.values == british_spl.values
|
||||||
|
if check.all():
|
||||||
|
print('PASS: spelling change successfull'
|
||||||
|
, '\nNo. of predicted affinity changes:\n', british_spl
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL: spelling change unsucessfull'
|
||||||
|
, '\nExpected:\n', american_spl
|
||||||
|
, '\nGot:\n', british_spl
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%===========================================================================
|
||||||
|
# check dtype in cols: ensure correct dtypes for cols
|
||||||
|
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
|
||||||
|
, '\n===================================================================')
|
||||||
|
#1) numeric cols
|
||||||
|
print('Converting the following cols to numeric:'
|
||||||
|
, '\nligand_distance'
|
||||||
|
, '\nduet_stability_change'
|
||||||
|
, '\nligand_affinity_change'
|
||||||
|
, '\n===================================================================')
|
||||||
|
# using apply method to change stabilty and affinity values to numeric
|
||||||
|
numeric_cols = ['duet_stability_change', 'ligand_affinity_change', 'ligand_distance']
|
||||||
|
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
|
||||||
|
|
||||||
|
# check dtype in cols
|
||||||
|
print('checking dtype after conversion')
|
||||||
|
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
|
||||||
|
if cols_check.all():
|
||||||
|
print('PASS: dtypes for selected cols:', numeric_cols
|
||||||
|
, '\nchanged to numeric'
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||||
|
, '\n===============================================================')
|
||||||
|
#mcsm_data['ligand_distance', 'ligand_affinity_change'].apply(is_numeric_dtype(mcsm_data['ligand_distance', 'ligand_affinity_change']))
|
||||||
|
print(mcsm_data.dtypes)
|
||||||
|
#%%===========================================================================
|
||||||
|
# Normalise values in DUET_change col b/w -1 and 1 so negative numbers
|
||||||
|
# stay neg and pos numbers stay positive
|
||||||
|
duet_min = mcsm_data['duet_stability_change'].min()
|
||||||
|
duet_max = mcsm_data['duet_stability_change'].max()
|
||||||
|
|
||||||
|
duet_scale = lambda x : x/abs(duet_min) if x < 0 else (x/duet_max if x >= 0 else 'failed')
|
||||||
|
|
||||||
|
mcsm_data['duet_scaled'] = mcsm_data['duet_stability_change'].apply(duet_scale)
|
||||||
|
print('Raw duet scores:\n', mcsm_data['duet_stability_change']
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nScaled duet scores:\n', mcsm_data['duet_scaled'])
|
||||||
|
#%%===========================================================================
|
||||||
|
# Normalise values in affinity change col b/w -1 and 1 so negative numbers
|
||||||
|
# stay neg and pos numbers stay positive
|
||||||
|
aff_min = mcsm_data['ligand_affinity_change'].min()
|
||||||
|
aff_max = mcsm_data['ligand_affinity_change'].max()
|
||||||
|
|
||||||
|
aff_scale = lambda x : x/abs(aff_min) if x < 0 else (x/aff_max if x >= 0 else 'failed')
|
||||||
|
|
||||||
|
mcsm_data['ligand_affinity_change']
|
||||||
|
mcsm_data['affinity_scaled'] = mcsm_data['ligand_affinity_change'].apply(aff_scale)
|
||||||
|
mcsm_data['affinity_scaled']
|
||||||
|
print('Raw affinity scores:\n', mcsm_data['ligand_affinity_change']
|
||||||
|
, '\n---------------------------------------------------------------'
|
||||||
|
, '\nScaled affinity scores:\n', mcsm_data['affinity_scaled'])
|
||||||
|
#=============================================================================
|
||||||
|
# Adding colname: wild_pos: sometimes useful for plotting and db
|
||||||
|
print('Creating column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str)
|
||||||
|
print(mcsm_data['wild_position'].head())
|
||||||
|
# Remove spaces b/w pasted columns
|
||||||
|
print('removing white space within column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_position'].str.replace(' ', '')
|
||||||
|
print('Correctly formatted column: wild_position\n', mcsm_data['wild_position'].head()
|
||||||
|
, '\n===================================================================')
|
||||||
|
#=============================================================================
|
||||||
|
#%% ensuring dtypes are string for the non-numeric cols
|
||||||
|
#) char cols
|
||||||
|
char_cols = ['PredAffLog', 'mutation_information', 'wild_type', 'mutant_type', 'chain'
|
||||||
|
, 'ligand_id', 'duet_outcome', 'ligand_outcome', 'wild_position']
|
||||||
|
|
||||||
|
#mcsm_data[char_cols] = mcsm_data[char_cols].astype(str)
|
||||||
|
cols_check_char = mcsm_data.select_dtypes(include='object').columns.isin(char_cols)
|
||||||
|
|
||||||
|
if cols_check_char.all():
|
||||||
|
print('PASS: dtypes for char cols:', char_cols, 'are indeed string'
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||||
|
, '\n===============================================================')
|
||||||
|
#mcsm_data['ligand_distance', 'ligand_affinity_change'].apply(is_numeric_dtype(mcsm_data['ligand_distance', 'ligand_affinity_change']))
|
||||||
|
print(mcsm_data.dtypes)
|
||||||
|
#%%
|
||||||
|
#=============================================================================
|
||||||
|
# Removing PredAff log column as it is not needed?
|
||||||
|
print('Removing col: PredAffLog since relevant info has been extracted from it')
|
||||||
|
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
|
||||||
|
#%%===========================================================================
|
||||||
|
expected_ncols_toadd = 5 # beware of hardcoded numbers
|
||||||
|
dforig_len = dforig_shape[1]
|
||||||
|
expected_cols = dforig_len + expected_ncols_toadd
|
||||||
|
if len(mcsm_dataf.columns) == expected_cols:
|
||||||
|
print('PASS: formatting successful'
|
||||||
|
, '\nformatted df has expected no. of cols:', expected_cols
|
||||||
|
, '\ncolnames:', mcsm_dataf.columns
|
||||||
|
, '\n----------------------------------------------------------------'
|
||||||
|
, '\ndtypes in cols:', mcsm_dataf.dtypes
|
||||||
|
, '\n----------------------------------------------------------------'
|
||||||
|
, '\norig data shape:', dforig_shape
|
||||||
|
, '\nformatted df shape:', mcsm_dataf.shape
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL: something went wrong in formatting df'
|
||||||
|
, '\nLen of orig df:', dforig_len
|
||||||
|
, '\nExpected number of cols to add:', expected_ncols_toadd
|
||||||
|
, '\nExpected no. of cols:', expected_cols, '(', dforig_len, '+', expected_ncols_toadd, ')'
|
||||||
|
, '\nGot no. of cols:', len(mcsm_dataf.columns)
|
||||||
|
, '\nCheck formatting:'
|
||||||
|
, '\ncheck hardcoded value:', expected_ncols_toadd
|
||||||
|
, '\nis', expected_ncols_toadd, 'the no. of expected cols to add?'
|
||||||
|
, '\n===============================================================')
|
||||||
|
#%%============================================================================
|
||||||
|
# writing file
|
||||||
|
print('Writing formatted df to csv')
|
||||||
|
mcsm_dataf.to_csv(outfile, index = False)
|
||||||
|
|
||||||
|
print('Finished writing file:'
|
||||||
|
, '\nFile:', outfile
|
||||||
|
, '\nExpected no. of rows:', len(mcsm_dataf)
|
||||||
|
, '\nExpected no. of cols:', len(mcsm_dataf.columns)
|
||||||
|
, '\n=============================================================')
|
||||||
|
#%%
|
||||||
|
#End of script
|
149
mcsm/ind_scripts/mcsm_results.py
Executable file
149
mcsm/ind_scripts/mcsm_results.py
Executable file
|
@ -0,0 +1,149 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
#=======================================================================
|
||||||
|
#TASK:
|
||||||
|
#=======================================================================
|
||||||
|
#%% load packages
|
||||||
|
import os,sys
|
||||||
|
import subprocess
|
||||||
|
import argparse
|
||||||
|
import requests
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
import pandas as pd
|
||||||
|
from bs4 import BeautifulSoup
|
||||||
|
#import beautifulsoup4
|
||||||
|
from csv import reader
|
||||||
|
#=======================================================================
|
||||||
|
#%% specify input and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/mcsm')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
|
||||||
|
#drug = 'isoniazid'
|
||||||
|
#gene = 'KatG'
|
||||||
|
|
||||||
|
drug = 'cycloserine'
|
||||||
|
gene = 'alr'
|
||||||
|
|
||||||
|
#drug = args.drug
|
||||||
|
#gene = args.gene
|
||||||
|
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input:
|
||||||
|
#=======
|
||||||
|
# 1) result_urls (from outdir)
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
in_filename_url = gene.lower() + '_result_urls.txt' #(outfile, sub write_result_url)
|
||||||
|
infile_url = outdir + '/' + in_filename_url
|
||||||
|
print('Input filename:', in_filename_url
|
||||||
|
, '\nInput path(from output dir):', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
out_filename = gene.lower() + '_mcsm_output.csv'
|
||||||
|
outfile = outdir + '/' + out_filename
|
||||||
|
print('Output filename:', out_filename
|
||||||
|
, '\nOutput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
#=======================================================================
|
||||||
|
def scrape_results(out_result_url):
|
||||||
|
"""
|
||||||
|
Extract results data using the result url
|
||||||
|
|
||||||
|
@params out_result_url: txt file containing result url
|
||||||
|
one per line for each mutation
|
||||||
|
@type string
|
||||||
|
|
||||||
|
returns: mcsm prediction results (raw)
|
||||||
|
@type chr
|
||||||
|
"""
|
||||||
|
result_response = requests.get(out_result_url)
|
||||||
|
# if results_response is not None:
|
||||||
|
# page = results_page.text
|
||||||
|
if result_response.status_code == 200:
|
||||||
|
print('SUCCESS: Fetching results')
|
||||||
|
else:
|
||||||
|
print('FAIL: Could not fetch results'
|
||||||
|
, '\nCheck if url is valid')
|
||||||
|
# extract results using the html parser
|
||||||
|
soup = BeautifulSoup(result_response.text, features = 'html.parser')
|
||||||
|
# print(soup)
|
||||||
|
web_result_raw = soup.find(class_ = 'span4').get_text()
|
||||||
|
|
||||||
|
return web_result_raw
|
||||||
|
|
||||||
|
|
||||||
|
def build_result_dict(web_result_raw):
|
||||||
|
"""
|
||||||
|
Build dict of mcsm output for a single mutation
|
||||||
|
Format web results which is preformatted to enable building result dict
|
||||||
|
# preformatted string object: Problematic!
|
||||||
|
# make format consistent
|
||||||
|
|
||||||
|
@params web_result_raw: directly from html parser extraction
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@returns result dict
|
||||||
|
@type {}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# remove blank lines from web_result_raw
|
||||||
|
mytext = os.linesep.join([s for s in web_result_raw.splitlines() if s])
|
||||||
|
|
||||||
|
# affinity change and DUET stability change cols are are split over
|
||||||
|
# multiple lines and Mutation information is empty!
|
||||||
|
mytext = mytext.replace('ange:\n', 'ange: ')
|
||||||
|
#print(mytext)
|
||||||
|
|
||||||
|
# initiliase result_dict
|
||||||
|
result_dict = {}
|
||||||
|
for line in mytext.split('\n'):
|
||||||
|
fields = line.split(':')
|
||||||
|
# print(fields)
|
||||||
|
if len(fields) > 1: # since Mutaton information is empty
|
||||||
|
dict_entry = dict([(x, y) for x, y in zip(fields[::2], fields[1::2])])
|
||||||
|
result_dict.update(dict_entry)
|
||||||
|
|
||||||
|
return result_dict
|
||||||
|
#=====================================================================
|
||||||
|
#%% call function
|
||||||
|
#request_results(infile_url)
|
||||||
|
#response = requests.get('http://biosig.unimelb.edu.au/mcsm_lig/results_prediction/1586364780.41')
|
||||||
|
results_interim = scrape_results('http://biosig.unimelb.edu.au/mcsm_lig/results_prediction/1587053996.55')
|
||||||
|
result_dict = build_result_dict(results_interim)
|
||||||
|
|
||||||
|
output_df = pd.DataFrame()
|
||||||
|
|
||||||
|
url_counter = 1 # HURR DURR COUNT STARTEDS AT ONE1`!1
|
||||||
|
infile_len = os.popen('wc -l < %s' % infile_url).read() # quicker than using Python :-)
|
||||||
|
print('Total URLs:',infile_len)
|
||||||
|
|
||||||
|
with open(infile_url, 'r') as urlfile:
|
||||||
|
for line in urlfile:
|
||||||
|
url_line = line.strip()
|
||||||
|
# response = request_results(url_line)
|
||||||
|
#response = requests.get(url_line)
|
||||||
|
results_interim = scrape_results(url_line)
|
||||||
|
result_dict = build_result_dict(results_interim)
|
||||||
|
print('Processing URL: %s of %s' % (url_counter, infile_len))
|
||||||
|
df = pd.DataFrame(result_dict, index=[url_counter])
|
||||||
|
url_counter += 1
|
||||||
|
output_df = output_df.append(df)
|
||||||
|
|
||||||
|
#print(output_df)
|
||||||
|
output_df.to_csv(outfile, index = None, header = True)
|
240
mcsm/ind_scripts/run_mcsm.py
Executable file
240
mcsm/ind_scripts/run_mcsm.py
Executable file
|
@ -0,0 +1,240 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
#=======================================================================
|
||||||
|
#TASK:
|
||||||
|
#=======================================================================
|
||||||
|
#%% load packages
|
||||||
|
import os,sys
|
||||||
|
import subprocess
|
||||||
|
import argparse
|
||||||
|
import requests
|
||||||
|
import re
|
||||||
|
import time
|
||||||
|
import pandas as pd
|
||||||
|
from bs4 import BeautifulSoup
|
||||||
|
#from csv import reader
|
||||||
|
#=======================================================================
|
||||||
|
#%% specify input and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/mcsm')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% command line args
|
||||||
|
#arg_parser = argparse.ArgumentParser()
|
||||||
|
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||||
|
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||||
|
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'TESTDRUG')
|
||||||
|
#arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = 'testGene') # case sensitive
|
||||||
|
#args = arg_parser.parse_args()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
|
||||||
|
#drug = 'isoniazid'
|
||||||
|
#gene = 'KatG'
|
||||||
|
|
||||||
|
drug = 'cycloserine'
|
||||||
|
gene = 'alr'
|
||||||
|
|
||||||
|
|
||||||
|
#drug = args.drug
|
||||||
|
#gene = args.gene
|
||||||
|
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#==========
|
||||||
|
# input dir
|
||||||
|
#==========
|
||||||
|
indir = datadir + '/' + drug + '/' + 'input'
|
||||||
|
|
||||||
|
#==========
|
||||||
|
# output dir
|
||||||
|
#==========
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input files:
|
||||||
|
#=======
|
||||||
|
# 1) pdb file
|
||||||
|
in_filename_pdb = gene.lower() + '_complex.pdb'
|
||||||
|
infile_pdb = indir + '/' + in_filename_pdb
|
||||||
|
print('Input pdb file:', infile_pdb
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
# 2) mcsm snps
|
||||||
|
in_filename_snps = gene.lower() + '_mcsm_snps.csv' #(outfile2, from data_extraction.py)
|
||||||
|
infile_snps = outdir + '/' + in_filename_snps
|
||||||
|
print('Input mutation file:', infile_snps
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# output files
|
||||||
|
#=======
|
||||||
|
|
||||||
|
# 1) result urls file
|
||||||
|
#result_urls_filename = gene.lower() + '_result_urls.txt'
|
||||||
|
#result_urls = outdir + '/' + result_urls_filename
|
||||||
|
|
||||||
|
# 2) invalid mutations file
|
||||||
|
#invalid_muts_filename = gene.lower() + '_invalid_mutations.txt'
|
||||||
|
#outfile_invalid_muts = outdir + '/' + invalid_muts_filename
|
||||||
|
|
||||||
|
#print('Result url file:', result_urls
|
||||||
|
# , '\n==================================================================='
|
||||||
|
# , '\nOutput invalid muations file:', outfile_invalid_muts
|
||||||
|
# , '\n===================================================================')
|
||||||
|
|
||||||
|
#%% global variables
|
||||||
|
host = "http://biosig.unimelb.edu.au"
|
||||||
|
prediction_url = f"{host}/mcsm_lig/prediction"
|
||||||
|
#=======================================================================
|
||||||
|
def format_data(data_file):
|
||||||
|
"""
|
||||||
|
Read file containing SNPs for mcsm analysis and remove duplicates
|
||||||
|
|
||||||
|
@param data_file csv file containing nsSNPs for given drug and gene.
|
||||||
|
csv file format:
|
||||||
|
single column with no headers with nsSNP format as below:
|
||||||
|
A1B
|
||||||
|
B2C
|
||||||
|
@type data_file: string
|
||||||
|
|
||||||
|
@return unique SNPs
|
||||||
|
@type list
|
||||||
|
"""
|
||||||
|
data = pd.read_csv(data_file, header = None, index_col = False)
|
||||||
|
data = data.drop_duplicates()
|
||||||
|
mutation_list = data[0].tolist()
|
||||||
|
# print(data.head())
|
||||||
|
return mutation_list
|
||||||
|
|
||||||
|
def request_calculation(pdb_file, mutation, chain, ligand_id, wt_affinity, prediction_url, output_dir, gene_name):
|
||||||
|
"""
|
||||||
|
Makes a POST request for a ligand affinity prediction.
|
||||||
|
|
||||||
|
@param pdb_file: valid path to pdb structure
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@param mutation: single mutation of the format: {WT}<POS>{Mut}
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@param chain: single-letter(caps)
|
||||||
|
@type chr
|
||||||
|
|
||||||
|
@param lig_id: 3-letter code (should match pdb file)
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@param wt affinity: in nM
|
||||||
|
@type number
|
||||||
|
|
||||||
|
@param prediction_url: mcsm url for prediction
|
||||||
|
@type string
|
||||||
|
|
||||||
|
@return response object
|
||||||
|
@type object
|
||||||
|
"""
|
||||||
|
with open(pdb_file, "rb") as pdb_file:
|
||||||
|
files = {"wild": pdb_file}
|
||||||
|
body = {
|
||||||
|
"mutation": mutation,
|
||||||
|
"chain": chain,
|
||||||
|
"lig_id": ligand_id,
|
||||||
|
"affin_wt": wt_affinity
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(prediction_url, files = files, data = body)
|
||||||
|
# print(response.status_code)
|
||||||
|
# result_status = response.raise_for_status()
|
||||||
|
if response.history:
|
||||||
|
# if result_status is not None: # doesn't work!
|
||||||
|
print('PASS: valid mutation submitted. Fetching result url')
|
||||||
|
# response = requests.post(prediction_url, files = files, data = body)
|
||||||
|
# return response
|
||||||
|
url_match = re.search('/mcsm_lig/results_prediction/.+(?=")', response.text)
|
||||||
|
url = host + url_match.group()
|
||||||
|
#===============
|
||||||
|
# writing file: result urls
|
||||||
|
#===============
|
||||||
|
out_url_file = output_dir + '/' + gene_name.lower() + '_result_urls.txt'
|
||||||
|
myfile = open(out_url_file, 'a')
|
||||||
|
myfile.write(url + '\n')
|
||||||
|
myfile.close()
|
||||||
|
|
||||||
|
else:
|
||||||
|
print('ERROR: invalid mutation! Wild-type residue doesn\'t match pdb file.'
|
||||||
|
, '\nSkipping to the next mutation in file...')
|
||||||
|
#===============
|
||||||
|
# writing file: invalid mutations
|
||||||
|
#===============
|
||||||
|
out_error_file = output_dir + '/' + gene_name.lower() + '_errors.txt'
|
||||||
|
failed_muts = open(out_error_file, 'a')
|
||||||
|
failed_muts.write(mutation + '\n')
|
||||||
|
failed_muts.close()
|
||||||
|
|
||||||
|
#def write_result_url(holding_page, out_result_url, host):
|
||||||
|
# """
|
||||||
|
# Extract and write results url from the holding page returned after
|
||||||
|
# requesting a calculation.
|
||||||
|
|
||||||
|
# @param holding_page: response object containinig html content
|
||||||
|
# @type object
|
||||||
|
|
||||||
|
# @param out_result_url: txt file containing urls for mcsm results
|
||||||
|
# @type string
|
||||||
|
|
||||||
|
# @param host: mcsm server name
|
||||||
|
# @type string
|
||||||
|
|
||||||
|
# @return None, writes a file containing result urls (= total no. of muts)
|
||||||
|
# """
|
||||||
|
# if holding_page:
|
||||||
|
# url_match = re.search('/mcsm_lig/results_prediction/.+(?=")', holding_page.text)
|
||||||
|
# url = host + url_match.group()
|
||||||
|
#===============
|
||||||
|
# writing file
|
||||||
|
#===============
|
||||||
|
# myfile = open(out_result_url, 'a')
|
||||||
|
# myfile.write(url+'\n')
|
||||||
|
# myfile.close()
|
||||||
|
# print(myfile)
|
||||||
|
# return url
|
||||||
|
#%%
|
||||||
|
#=======================================================================
|
||||||
|
# variables to run mcsm lig predictions
|
||||||
|
#pdb_file = infile_snps_pdb
|
||||||
|
my_chain = 'A'
|
||||||
|
my_ligand_id = 'DCS'
|
||||||
|
my_affinity = 10
|
||||||
|
|
||||||
|
print('Result urls and error file (if any) will be written in: ', outdir)
|
||||||
|
|
||||||
|
# call function to format data to remove duplicate snps before submitting job
|
||||||
|
mcsm_muts = format_data(infile_snps)
|
||||||
|
mut_count = 1 # HURR DURR COUNT STARTEDS AT ONE1`!1
|
||||||
|
infile_snps_len = os.popen('wc -l < %s' % infile_snps).read() # quicker than using Python :-)
|
||||||
|
print('Total SNPs for', gene, ':', infile_snps_len)
|
||||||
|
for mcsm_mut in mcsm_muts:
|
||||||
|
print('Processing mutation: %s of %s' % (mut_count, infile_snps_len), mcsm_mut)
|
||||||
|
print('Parameters for mcsm_lig:', in_filename_pdb, mcsm_mut, my_chain, my_ligand_id, my_affinity, prediction_url, outdir, gene)
|
||||||
|
# function call: to request mcsm prediction
|
||||||
|
# which writes file containing url for valid submissions and invalid muts to respective files
|
||||||
|
holding_page = request_calculation(infile_pdb, mcsm_mut, my_chain, my_ligand_id, my_affinity, prediction_url, outdir, gene)
|
||||||
|
# holding_page = request_calculation(infile_pdb, mcsm_mut, my_chain, my_ligand_id, my_affinity, prediction_url, outdir, gene)
|
||||||
|
time.sleep(1)
|
||||||
|
mut_count += 1
|
||||||
|
# result_url = write_result_url(holding_page, result_urls, host)
|
||||||
|
|
||||||
|
print('Request submitted'
|
||||||
|
, '\nCAUTION: Processing will take at least ten'
|
||||||
|
, 'minutes, but will be longer for more mutations.')
|
||||||
|
|
||||||
|
#%%
|
||||||
|
|
||||||
|
|
||||||
|
|
158
mcsm/mcsm.py
158
mcsm/mcsm.py
|
@ -174,17 +174,17 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
@type pandas df
|
@type pandas df
|
||||||
|
|
||||||
"""
|
"""
|
||||||
#############
|
#############
|
||||||
# Read file
|
# Read file
|
||||||
#############
|
#############
|
||||||
mcsm_data = pd.read_csv(mcsm_outputcsv, sep = ',')
|
mcsm_data = pd.read_csv(mcsm_outputcsv, sep = ',')
|
||||||
dforig_shape = mcsm_data.shape
|
dforig_shape = mcsm_data.shape
|
||||||
print('dimensions of input file:', dforig_shape)
|
print('dimensions of input file:', dforig_shape)
|
||||||
|
|
||||||
#############
|
#############
|
||||||
# rename cols
|
# rename cols
|
||||||
#############
|
#############
|
||||||
# format colnames: all lowercase, remove spaces and use '_' to join
|
# format colnames: all lowercase, remove spaces and use '_' to join
|
||||||
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
|
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog' # relevant info from this col will be extracted and the column discarded
|
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog' # relevant info from this col will be extracted and the column discarded
|
||||||
|
@ -199,26 +199,26 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
|
|
||||||
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
|
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#################################
|
#################################
|
||||||
# populate mutation_information
|
# populate mutation_information
|
||||||
# col which is currently blank
|
# col which is currently blank
|
||||||
#################################
|
#################################
|
||||||
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
|
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
|
||||||
print('Populating column : mutation_information which is currently empty\n', mcsm_data['mutation_information'])
|
print('Populating column : mutation_information which is currently empty\n', mcsm_data['mutation_information'])
|
||||||
mcsm_data['mutation_information'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str) + mcsm_data['mutant_type']
|
mcsm_data['mutation_information'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str) + mcsm_data['mutant_type']
|
||||||
print('checking after populating:\n', mcsm_data['mutation_information']
|
print('checking after populating:\n', mcsm_data['mutation_information']
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
# Remove spaces b/w pasted columns
|
# Remove spaces b/w pasted columns
|
||||||
print('removing white space within column: \mutation_information')
|
print('removing white space within column: \mutation_information')
|
||||||
mcsm_data['mutation_information'] = mcsm_data['mutation_information'].str.replace(' ', '')
|
mcsm_data['mutation_information'] = mcsm_data['mutation_information'].str.replace(' ', '')
|
||||||
print('Correctly formatted column: mutation_information\n', mcsm_data['mutation_information']
|
print('Correctly formatted column: mutation_information\n', mcsm_data['mutation_information']
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# sanity check: drop dupliate muts
|
# sanity check: drop dupliate muts
|
||||||
#############
|
#############
|
||||||
# shouldn't exist as this should be eliminated at the time of running mcsm
|
# shouldn't exist as this should be eliminated at the time of running mcsm
|
||||||
print('Sanity check:'
|
print('Sanity check:'
|
||||||
, '\nChecking duplicate mutations')
|
, '\nChecking duplicate mutations')
|
||||||
if mcsm_data['mutation_information'].duplicated().sum() == 0:
|
if mcsm_data['mutation_information'].duplicated().sum() == 0:
|
||||||
|
@ -233,10 +233,10 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
print('Dim of data after removing duplicate muts:', mcsm_data.shape
|
print('Dim of data after removing duplicate muts:', mcsm_data.shape
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# Create col: duet_outcome
|
# Create col: duet_outcome
|
||||||
#############
|
#############
|
||||||
# classification based on DUET stability values
|
# classification based on DUET stability values
|
||||||
print('Assigning col: duet_outcome based on DUET stability values')
|
print('Assigning col: duet_outcome based on DUET stability values')
|
||||||
print('Sanity check:')
|
print('Sanity check:')
|
||||||
# count positive values in the DUET column
|
# count positive values in the DUET column
|
||||||
|
@ -253,25 +253,25 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\nGot no. of stabilising mutations', mcsm_data['duet_outcome'].value_counts()['Stabilising']
|
, '\nGot no. of stabilising mutations', mcsm_data['duet_outcome'].value_counts()['Stabilising']
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# Extract numeric
|
# Extract numeric
|
||||||
# part of ligand_distance col
|
# part of ligand_distance col
|
||||||
#############
|
#############
|
||||||
# Extract only the numeric part from col: ligand_distance
|
# Extract only the numeric part from col: ligand_distance
|
||||||
# number: '-?\d+\.?\d*'
|
# number: '-?\d+\.?\d*'
|
||||||
mcsm_data['ligand_distance']
|
mcsm_data['ligand_distance']
|
||||||
print('extracting numeric part of col: ligand_distance')
|
print('extracting numeric part of col: ligand_distance')
|
||||||
mcsm_data['ligand_distance'] = mcsm_data['ligand_distance'].str.extract('(\d+\.?\d*)')
|
mcsm_data['ligand_distance'] = mcsm_data['ligand_distance'].str.extract('(\d+\.?\d*)')
|
||||||
mcsm_data['ligand_distance']
|
mcsm_data['ligand_distance']
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# Create 2 columns:
|
# Create 2 columns:
|
||||||
# ligand_affinity_change and ligand_outcome
|
# ligand_affinity_change and ligand_outcome
|
||||||
#############
|
#############
|
||||||
# the numerical and categorical parts need to be extracted from column: PredAffLog
|
# the numerical and categorical parts need to be extracted from column: PredAffLog
|
||||||
# regex used
|
# regex used
|
||||||
# numerical part: '-?\d+\.?\d*'
|
# numerical part: '-?\d+\.?\d*'
|
||||||
# categorocal part: '\b(\w+ing)\b'
|
# categorocal part: '\b(\w+ing)\b'
|
||||||
print('Extracting numerical and categorical parts from the col: PredAffLog')
|
print('Extracting numerical and categorical parts from the col: PredAffLog')
|
||||||
print('to create two columns: ligand_affinity_change and ligand_outcome'
|
print('to create two columns: ligand_affinity_change and ligand_outcome'
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
@ -306,9 +306,9 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\nExpected:\n', american_spl
|
, '\nExpected:\n', american_spl
|
||||||
, '\nGot:\n', british_spl
|
, '\nGot:\n', british_spl
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# ensuring corrrect dtype columns
|
# ensuring corrrect dtype for numeric columns
|
||||||
#############
|
#############
|
||||||
# check dtype in cols
|
# check dtype in cols
|
||||||
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
|
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
|
||||||
|
@ -319,10 +319,10 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\nligand_affinity_change'
|
, '\nligand_affinity_change'
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
# using apply method to change stabilty and affinity values to numeric
|
# using apply method to change stabilty and affinity values to numeric
|
||||||
numeric_cols = ['duet_stability_change', 'ligand_affinity_change', 'ligand_distance']
|
numeric_cols = ['duet_stability_change', 'ligand_affinity_change', 'ligand_distance']
|
||||||
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
|
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
|
||||||
# check dtype in cols
|
# check dtype in cols
|
||||||
print('checking dtype after conversion')
|
print('checking dtype after conversion')
|
||||||
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
|
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
|
||||||
if cols_check.all():
|
if cols_check.all():
|
||||||
|
@ -334,12 +334,11 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
print(mcsm_data.dtypes)
|
print(mcsm_data.dtypes)
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
#############
|
# scale duet values
|
||||||
# scale duet values
|
#############
|
||||||
#############
|
# Rescale values in DUET_change col b/w -1 and 1 so negative numbers
|
||||||
# Rescale values in DUET_change col b/w -1 and 1 so negative numbers
|
# stay neg and pos numbers stay positive
|
||||||
# stay neg and pos numbers stay positive
|
|
||||||
duet_min = mcsm_data['duet_stability_change'].min()
|
duet_min = mcsm_data['duet_stability_change'].min()
|
||||||
duet_max = mcsm_data['duet_stability_change'].max()
|
duet_max = mcsm_data['duet_stability_change'].max()
|
||||||
|
|
||||||
|
@ -351,11 +350,11 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\nScaled duet scores:\n', mcsm_data['duet_scaled'])
|
, '\nScaled duet scores:\n', mcsm_data['duet_scaled'])
|
||||||
|
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# scale affinity values
|
# scale affinity values
|
||||||
#############
|
#############
|
||||||
# rescale values in affinity change col b/w -1 and 1 so negative numbers
|
# rescale values in affinity change col b/w -1 and 1 so negative numbers
|
||||||
# stay neg and pos numbers stay positive
|
# stay neg and pos numbers stay positive
|
||||||
aff_min = mcsm_data['ligand_affinity_change'].min()
|
aff_min = mcsm_data['ligand_affinity_change'].min()
|
||||||
aff_max = mcsm_data['ligand_affinity_change'].max()
|
aff_max = mcsm_data['ligand_affinity_change'].max()
|
||||||
|
|
||||||
|
@ -365,17 +364,52 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
print('Raw affinity scores:\n', mcsm_data['ligand_affinity_change']
|
print('Raw affinity scores:\n', mcsm_data['ligand_affinity_change']
|
||||||
, '\n---------------------------------------------------------------'
|
, '\n---------------------------------------------------------------'
|
||||||
, '\nScaled affinity scores:\n', mcsm_data['affinity_scaled'])
|
, '\nScaled affinity scores:\n', mcsm_data['affinity_scaled'])
|
||||||
#=============================================================================
|
|
||||||
# Removing PredAff log column as it is not needed?
|
#%%===========================================================================
|
||||||
|
#############
|
||||||
|
# adding column: wild_position
|
||||||
|
# useful for plots and db
|
||||||
|
#############
|
||||||
|
print('Creating column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str)
|
||||||
|
print(mcsm_data['wild_position'].head())
|
||||||
|
# Remove spaces b/w pasted columns
|
||||||
|
print('removing white space within column: wild_position')
|
||||||
|
mcsm_data['wild_position'] = mcsm_data['wild_position'].str.replace(' ', '')
|
||||||
|
print('Correctly formatted column: wild_position\n', mcsm_data['wild_position'].head()
|
||||||
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
#%%===========================================================================
|
||||||
|
|
||||||
|
#############
|
||||||
|
# ensuring corrrect dtype in non-numeric cols
|
||||||
|
#############
|
||||||
|
|
||||||
|
#) char cols
|
||||||
|
char_cols = ['PredAffLog', 'mutation_information', 'wild_type', 'mutant_type', 'chain', 'ligand_id', 'duet_outcome', 'ligand_outcome', 'wild_position']
|
||||||
|
|
||||||
|
#mcsm_data[char_cols] = mcsm_data[char_cols].astype(str)
|
||||||
|
cols_check_char = mcsm_data.select_dtypes(include = 'object').columns.isin(char_cols)
|
||||||
|
|
||||||
|
if cols_check_char.all():
|
||||||
|
print('PASS: dtypes for char cols:', char_cols, 'are indeed string'
|
||||||
|
, '\n===============================================================')
|
||||||
|
else:
|
||||||
|
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||||
|
, '\n===============================================================')
|
||||||
|
#mcsm_data['ligand_distance', 'ligand_affinity_change'].apply(is_numeric_dtype(mcsm_data['ligand_distance', 'ligand_affinity_change']))
|
||||||
|
print(mcsm_data.dtypes)
|
||||||
|
#%%=============================================================================
|
||||||
|
# Removing PredAff log column as it is not needed?
|
||||||
print('Removing col: PredAffLog since relevant info has been extracted from it')
|
print('Removing col: PredAffLog since relevant info has been extracted from it')
|
||||||
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
|
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
|
||||||
#%%===========================================================================
|
#%%===========================================================================
|
||||||
#############
|
#############
|
||||||
# sanity check before writing file
|
# sanity check before writing file
|
||||||
#############
|
#############
|
||||||
expected_cols_toadd = 4
|
expected_ncols_toadd = 5
|
||||||
dforig_len = dforig_shape[1]
|
dforig_len = dforig_shape[1]
|
||||||
expected_cols = dforig_len + expected_cols_toadd
|
expected_cols = dforig_len + expected_ncols_toadd
|
||||||
if len(mcsm_dataf.columns) == expected_cols:
|
if len(mcsm_dataf.columns) == expected_cols:
|
||||||
print('PASS: formatting successful'
|
print('PASS: formatting successful'
|
||||||
, '\nformatted df has expected no. of cols:', expected_cols
|
, '\nformatted df has expected no. of cols:', expected_cols
|
||||||
|
@ -389,9 +423,15 @@ def format_mcsm_output(mcsm_outputcsv):
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
else:
|
else:
|
||||||
print('FAIL: something went wrong in formatting df'
|
print('FAIL: something went wrong in formatting df'
|
||||||
, '\nExpected no. of cols:', expected_cols
|
, '\nLen of orig df:', dforig_len
|
||||||
|
, '\nExpected number of cols to add:', expected_ncols_toadd
|
||||||
|
, '\nExpected no. of cols:', expected_cols, '(', dforig_len, '+', expected_ncols_toadd, ')'
|
||||||
, '\nGot no. of cols:', len(mcsm_dataf.columns)
|
, '\nGot no. of cols:', len(mcsm_dataf.columns)
|
||||||
, '\nCheck formatting'
|
, '\nCheck formatting:'
|
||||||
|
, '\ncheck hardcoded value:', expected_ncols_toadd
|
||||||
|
, '\nis', expected_ncols_toadd, 'the no. of expected cols to add?'
|
||||||
, '\n===============================================================')
|
, '\n===============================================================')
|
||||||
|
|
||||||
|
|
||||||
return mcsm_dataf
|
return mcsm_dataf
|
||||||
|
|
||||||
|
|
|
@ -124,8 +124,7 @@ def format_results():
|
||||||
mcsm_df_formatted.to_csv(outfile_format, index = False)
|
mcsm_df_formatted.to_csv(outfile_format, index = False)
|
||||||
|
|
||||||
print('Finished writing file:'
|
print('Finished writing file:'
|
||||||
, '\nFilename:', out_filename_format
|
, '\nFile:', outfile_format
|
||||||
, '\nPath:', outdir
|
|
||||||
, '\nExpected no. of rows:', len(mcsm_df_formatted)
|
, '\nExpected no. of rows:', len(mcsm_df_formatted)
|
||||||
, '\nExpected no. of cols:', len(mcsm_df_formatted)
|
, '\nExpected no. of cols:', len(mcsm_df_formatted)
|
||||||
, '\n=============================================================')
|
, '\n=============================================================')
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue