moved scripts to /ind_scripts & added add col to formatting script

This commit is contained in:
Tanushree Tunstall 2020-04-20 12:52:10 +01:00
parent 368496733a
commit 8b1a7fc71c
6 changed files with 1129 additions and 62 deletions

View file

@ -158,7 +158,7 @@ def build_result_dict(web_result_raw):
fields = line.split(':')
#print(fields)
if len(fields) > 1: # since Mutaton information is empty
dict_entry = dict([(x, y) for x, y in zip(fields[::2], fields[1::2])])
dict_entry = dict([(x, y) for x, y in zip(fields[::2], fields[1::2])])
result_dict.update(dict_entry)
return result_dict
#%%
@ -174,17 +174,17 @@ def format_mcsm_output(mcsm_outputcsv):
@type pandas df
"""
#############
# Read file
#############
#############
# Read file
#############
mcsm_data = pd.read_csv(mcsm_outputcsv, sep = ',')
dforig_shape = mcsm_data.shape
print('dimensions of input file:', dforig_shape)
#############
# rename cols
#############
# format colnames: all lowercase, remove spaces and use '_' to join
#############
# rename cols
#############
# format colnames: all lowercase, remove spaces and use '_' to join
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
, '\n===================================================================')
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog' # relevant info from this col will be extracted and the column discarded
@ -199,26 +199,26 @@ def format_mcsm_output(mcsm_outputcsv):
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
#%%===========================================================================
#################################
# populate mutation_information
# col which is currently blank
#################################
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
#################################
# populate mutation_information
# col which is currently blank
#################################
# populate mutation_information column:mcsm style muts {WT}<POS>{MUT}
print('Populating column : mutation_information which is currently empty\n', mcsm_data['mutation_information'])
mcsm_data['mutation_information'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str) + mcsm_data['mutant_type']
print('checking after populating:\n', mcsm_data['mutation_information']
, '\n===================================================================')
# Remove spaces b/w pasted columns
# Remove spaces b/w pasted columns
print('removing white space within column: \mutation_information')
mcsm_data['mutation_information'] = mcsm_data['mutation_information'].str.replace(' ', '')
print('Correctly formatted column: mutation_information\n', mcsm_data['mutation_information']
, '\n===================================================================')
#%%===========================================================================
#############
# sanity check: drop dupliate muts
#############
# shouldn't exist as this should be eliminated at the time of running mcsm
#############
# sanity check: drop dupliate muts
#############
# shouldn't exist as this should be eliminated at the time of running mcsm
print('Sanity check:'
, '\nChecking duplicate mutations')
if mcsm_data['mutation_information'].duplicated().sum() == 0:
@ -233,10 +233,10 @@ def format_mcsm_output(mcsm_outputcsv):
print('Dim of data after removing duplicate muts:', mcsm_data.shape
, '\n===============================================================')
#%%===========================================================================
#############
# Create col: duet_outcome
#############
# classification based on DUET stability values
#############
# Create col: duet_outcome
#############
# classification based on DUET stability values
print('Assigning col: duet_outcome based on DUET stability values')
print('Sanity check:')
# count positive values in the DUET column
@ -253,25 +253,25 @@ def format_mcsm_output(mcsm_outputcsv):
, '\nGot no. of stabilising mutations', mcsm_data['duet_outcome'].value_counts()['Stabilising']
, '\n===============================================================')
#%%===========================================================================
#############
# Extract numeric
# part of ligand_distance col
#############
# Extract only the numeric part from col: ligand_distance
# number: '-?\d+\.?\d*'
#############
# Extract numeric
# part of ligand_distance col
#############
# Extract only the numeric part from col: ligand_distance
# number: '-?\d+\.?\d*'
mcsm_data['ligand_distance']
print('extracting numeric part of col: ligand_distance')
mcsm_data['ligand_distance'] = mcsm_data['ligand_distance'].str.extract('(\d+\.?\d*)')
mcsm_data['ligand_distance']
#%%===========================================================================
#############
# Create 2 columns:
# ligand_affinity_change and ligand_outcome
#############
# the numerical and categorical parts need to be extracted from column: PredAffLog
# regex used
# numerical part: '-?\d+\.?\d*'
# categorocal part: '\b(\w+ing)\b'
#############
# Create 2 columns:
# ligand_affinity_change and ligand_outcome
#############
# the numerical and categorical parts need to be extracted from column: PredAffLog
# regex used
# numerical part: '-?\d+\.?\d*'
# categorocal part: '\b(\w+ing)\b'
print('Extracting numerical and categorical parts from the col: PredAffLog')
print('to create two columns: ligand_affinity_change and ligand_outcome'
, '\n===================================================================')
@ -306,9 +306,9 @@ def format_mcsm_output(mcsm_outputcsv):
, '\nExpected:\n', american_spl
, '\nGot:\n', british_spl
, '\n===============================================================')
#%%===========================================================================
#%%===========================================================================
#############
# ensuring corrrect dtype columns
# ensuring corrrect dtype for numeric columns
#############
# check dtype in cols
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
@ -319,10 +319,10 @@ def format_mcsm_output(mcsm_outputcsv):
, '\nligand_affinity_change'
, '\n===================================================================')
# using apply method to change stabilty and affinity values to numeric
# using apply method to change stabilty and affinity values to numeric
numeric_cols = ['duet_stability_change', 'ligand_affinity_change', 'ligand_distance']
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
# check dtype in cols
# check dtype in cols
print('checking dtype after conversion')
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
if cols_check.all():
@ -334,12 +334,11 @@ def format_mcsm_output(mcsm_outputcsv):
, '\n===============================================================')
print(mcsm_data.dtypes)
#%%===========================================================================
#############
# scale duet values
#############
# Rescale values in DUET_change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
#############
# scale duet values
#############
# Rescale values in DUET_change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
duet_min = mcsm_data['duet_stability_change'].min()
duet_max = mcsm_data['duet_stability_change'].max()
@ -351,11 +350,11 @@ def format_mcsm_output(mcsm_outputcsv):
, '\nScaled duet scores:\n', mcsm_data['duet_scaled'])
#%%===========================================================================
#############
# scale affinity values
#############
# rescale values in affinity change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
#############
# scale affinity values
#############
# rescale values in affinity change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
aff_min = mcsm_data['ligand_affinity_change'].min()
aff_max = mcsm_data['ligand_affinity_change'].max()
@ -365,17 +364,52 @@ def format_mcsm_output(mcsm_outputcsv):
print('Raw affinity scores:\n', mcsm_data['ligand_affinity_change']
, '\n---------------------------------------------------------------'
, '\nScaled affinity scores:\n', mcsm_data['affinity_scaled'])
#=============================================================================
# Removing PredAff log column as it is not needed?
#%%===========================================================================
#############
# adding column: wild_position
# useful for plots and db
#############
print('Creating column: wild_position')
mcsm_data['wild_position'] = mcsm_data['wild_type'] + mcsm_data['position'].astype(str)
print(mcsm_data['wild_position'].head())
# Remove spaces b/w pasted columns
print('removing white space within column: wild_position')
mcsm_data['wild_position'] = mcsm_data['wild_position'].str.replace(' ', '')
print('Correctly formatted column: wild_position\n', mcsm_data['wild_position'].head()
, '\n===================================================================')
#%%===========================================================================
#############
# ensuring corrrect dtype in non-numeric cols
#############
#) char cols
char_cols = ['PredAffLog', 'mutation_information', 'wild_type', 'mutant_type', 'chain', 'ligand_id', 'duet_outcome', 'ligand_outcome', 'wild_position']
#mcsm_data[char_cols] = mcsm_data[char_cols].astype(str)
cols_check_char = mcsm_data.select_dtypes(include = 'object').columns.isin(char_cols)
if cols_check_char.all():
print('PASS: dtypes for char cols:', char_cols, 'are indeed string'
, '\n===============================================================')
else:
print('FAIL:dtype change to numeric for selected cols unsuccessful'
, '\n===============================================================')
#mcsm_data['ligand_distance', 'ligand_affinity_change'].apply(is_numeric_dtype(mcsm_data['ligand_distance', 'ligand_affinity_change']))
print(mcsm_data.dtypes)
#%%=============================================================================
# Removing PredAff log column as it is not needed?
print('Removing col: PredAffLog since relevant info has been extracted from it')
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
#%%===========================================================================
#############
# sanity check before writing file
#############
expected_cols_toadd = 4
#############
# sanity check before writing file
#############
expected_ncols_toadd = 5
dforig_len = dforig_shape[1]
expected_cols = dforig_len + expected_cols_toadd
expected_cols = dforig_len + expected_ncols_toadd
if len(mcsm_dataf.columns) == expected_cols:
print('PASS: formatting successful'
, '\nformatted df has expected no. of cols:', expected_cols
@ -389,9 +423,15 @@ def format_mcsm_output(mcsm_outputcsv):
, '\n===============================================================')
else:
print('FAIL: something went wrong in formatting df'
, '\nExpected no. of cols:', expected_cols
, '\nLen of orig df:', dforig_len
, '\nExpected number of cols to add:', expected_ncols_toadd
, '\nExpected no. of cols:', expected_cols, '(', dforig_len, '+', expected_ncols_toadd, ')'
, '\nGot no. of cols:', len(mcsm_dataf.columns)
, '\nCheck formatting'
, '\nCheck formatting:'
, '\ncheck hardcoded value:', expected_ncols_toadd
, '\nis', expected_ncols_toadd, 'the no. of expected cols to add?'
, '\n===============================================================')
return mcsm_dataf