moved old corr files

This commit is contained in:
Tanushree Tunstall 2022-08-04 19:28:39 +01:00
parent dab8294a01
commit 7f9facc1e6
6 changed files with 10 additions and 1392 deletions

View file

@ -1,330 +0,0 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Corr plots for PS and Lig
# Output: 1 svg
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
require(cowplot)
source("combining_dfs_plotting.R")
source("my_pairs_panel.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#=======
# output
#=======
# can't combine by cowplot because not ggplots
#corr_plot_combined = "corr_combined.svg"
#plot_corr_plot_combined = paste0(plotdir,"/", corr_plot_combined)
# PS
corr_ps_adjusted = "corr_PS_adjusted.svg"
plot_corr_ps_adjusted = paste0(plotdir,"/", corr_ps)
# LIG
corr_lig_adjusted = "corr_LIG_adjusted.svg"
plot_corr_lig_adjusted = paste0(plotdir,"/", corr_lig)
####################################################################
# end of loading libraries and functions #
########################################################################
#%%%%%%%%%%%%%%%%%%%%%%%%%
df_ps = merged_df3_comp
df_lig = merged_df3_comp_lig
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, my_df_u_lig)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#===========================
# Data for Correlation plots:PS
#===========================
table(df_ps$duet_outcome)
#===========================
# Data for Correlation plots:foldx
#===========================
#============================
# adding foldx scaled values
# scale data b/w -1 and 1
#============================
n = which(colnames(df_ps) == "ddg"); n
my_min = min(df_ps[,n]); my_min
my_max = max(df_ps[,n]); my_max
df_ps$foldx_scaled = ifelse(df_ps[,n] < 0
, df_ps[,n]/abs(my_min)
, df_ps[,n]/my_max)
# sanity check
my_min = min(df_ps$foldx_scaled); my_min
my_max = max(df_ps$foldx_scaled); my_max
if (my_min == -1 && my_max == 1){
cat("PASS: foldx ddg successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category")
}else{
cat("FAIL: could not scale foldx ddg values"
, "Aborting!")
}
#================================
# adding foldx outcome category
# ddg<0 = "Stabilising" (-ve)
#=================================
c1 = table(df_ps$ddg < 0)
df_ps$foldx_outcome = ifelse(df_ps$ddg < 0, "Stabilising", "Destabilising")
c2 = table(df_ps$ddg < 0)
if ( all(c1 == c2) ){
cat("PASS: foldx outcome successfully created")
}else{
cat("FAIL: foldx outcome could not be created. Aborting!")
exit()
}
table(df_ps$foldx_outcome)
#======================
# adding log cols
#======================
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
df_ps$log10_or_kin = log10(df_ps$or_kin)
df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
# subset data to generate pairwise correlations
cols_to_select = c("duet_scaled"
, "foldx_scaled"
#, "log10_or_mychisq"
#, "neglog_pval_fisher"
, "or_kin"
, "neglog_pwald_kin"
, "af"
, "asa"
, "rsa"
, "kd_values"
, "rd_values"
, "duet_outcome"
, drug)
corr_data_ps = df_ps[, cols_to_select]
dim(corr_data_ps)
#p_italic = substitute(paste("-Log(", italic('P'), ")"));p_italic
#p_adjusted_italic = substitute(paste("-Log(", italic('P adjusted'), ")"));p_adjusted_italic
# assign nice colnames (for display)
my_corr_colnames = c("DUET"
, "Foldx"
#, "Log(OR)"
#, "-Log(P)"
, "OR adjusted"
, "-Log(P wald)"
, "AF"
, "ASA"
, "RSA"
, "KD"
, "RD"
, "duet_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_ps)
colnames(corr_data_ps) <- my_corr_colnames
colnames(corr_data_ps)
#-----------------
# generate corr PS plot
#-----------------
start = 1
end = which(colnames(corr_data_ps) == drug); end # should be the last column
offset = 1
my_corr_ps = corr_data_ps[start:(end-offset)]
head(my_corr_ps)
#my_cols = c("#f8766d", "#00bfc4")
# deep blue :#007d85
# deep red: #ae301e
cat("Corr plot PS:", plot_corr_ps_adjusted)
svg(plot_corr_ps_adjusted, width = 15, height = 15)
OutPlot1 = pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps$duet_outcome))]
, pch = 21
, jitter = T
#, alpha = .05
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
, cex = 2
, cex.axis = 1.5
, cex.labels = 1.5
, cex.cor = 1
, smooth = F
)
print(OutPlot1)
dev.off()
#===========================
# Data for Correlation plots: LIG
#===========================
table(df_lig$ligand_outcome)
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
df_lig$log10_or_kin = log10(df_lig$or_kin)
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
# subset data to generate pairwise correlations
cols_to_select = c("affinity_scaled"
, "log10_or_mychisq"
, "neglog_pval_fisher"
#, "or_kin"
#, "neglog_pwald_kin"
, "af"
, "ligand_outcome"
, drug)
corr_data_lig = df_lig[, cols_to_select]
dim(corr_data_lig)
# assign nice colnames (for display)
my_corr_colnames = c("Ligand Affinity"
, "Log(OR)"
, "-Log(P)"
#, "OR adjusted"
#, "-Log(P wald)"
, "AF"
, "ligand_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_lig)
colnames(corr_data_lig) <- my_corr_colnames
colnames(corr_data_lig)
#-----------------
# generate corr LIG plot
#-----------------
start = 1
end = which(colnames(corr_data_lig) == drug); end # should be the last column
offset = 1
my_corr_lig = corr_data_lig[start:(end-offset)]
head(my_corr_lig)
cat("Corr LIG plot:", plot_corr_lig_adjusted)
svg(plot_corr_lig_adjusted, width = 15, height = 15)
OutPlot2 = pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig$ligand_outcome))]
, pch = 21
, jitter = T
#, alpha = .05
#, points(pch = 19, col = c("#f8766d", "#00bfc4"))
, cex = 3
, cex.axis = 2.5
, cex.labels = 2.1
, cex.cor = 1
, smooth = F
)
print(OutPlot2)
dev.off()
#######################################################

View file

@ -1,242 +0,0 @@
#!/usr/bin/env Rscript
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character",
"data_file1" , "fa", 2, "character",
"data_file2" , "fb", 2, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
infile_params = opt$data_file1
infile_metadata = opt$data_file2
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#===========
# Input
#===========
source("get_plotting_dfs.R")
#===========
# output
#===========
# PS
corr_ps = "corr_PS.svg"
plot_corr_ps = paste0(plotdir,"/", corr_ps)
corr_ps_all = "corr_PS_all.svg"
plot_corr_ps_all = paste0(plotdir,"/", corr_ps_all)
# LIG
corr_lig = "corr_LIG.svg"
plot_corr_lig = paste0(plotdir,"/", corr_lig)
corr_lig_all = "corr_LIG_all.svg"
plot_corr_lig_all = paste0(plotdir,"/", corr_lig_all)
##############################################################################
foo = corr_ps_df3
#foo2 = corr_ps_df2
bar = corr_lig_df3
#bar2 = corr_lig_df2
#================================
# Data for Correlation plots: PS
#================================
# subset data to generate pairwise correlations
cols_to_select = c("DUET"
, "Foldx"
, "Log (OR)"
, "-Log (P)"
, "MAF"
, "duet_outcome"
, drug)
corr_data_ps = foo[names(foo)%in%cols_to_select]
length(cols_to_select)
colnames(corr_data_ps)
start = 1
end = which(colnames(corr_data_ps) == drug); end # should be the last column
offset = 1
my_corr_ps = corr_data_ps[start:(end - offset)]
head(my_corr_ps)
#---------------------
# Corr plot PS: short
# data: corr_ps_df3
# cols: 7
#---------------------
cat("Corr plot PS DUET with coloured dots:", plot_corr_ps)
svg(plot_corr_ps, width = 15, height = 15)
pairs.panels(my_corr_ps[1:(length(my_corr_ps)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps$duet_outcome))] # foldx colours are reveresed
, pch = 21 # for bg
, jitter = T
, alpha = 1
, cex = 1.8
, cex.axis = 2
, cex.labels = 4
, cex.cor = 1
, smooth = F
)
dev.off()
corr_ps_rho = corr.test(my_corr_ps[1:5], method = "spearman")$r
corr_ps_p = corr.test(my_corr_ps[1:5], method = "spearman")$p
#---------------------
# Corr plot PS: ALL
# data: corr_ps_df3
# cols: 10
#---------------------
end_ps_all = which(colnames(foo) == drug); end_ps_all # should be the last column
my_corr_ps_all = foo[start:(end_ps_all - offset)]
cols_to_drop = "Mutation"
my_corr_ps_all = my_corr_ps_all[, !(names(my_corr_ps_all)%in%cols_to_drop)]
head(my_corr_ps_all)
length(colnames(my_corr_ps_all))
cat("Corr plot PS DUET with coloured dots:", plot_corr_ps_all)
svg(plot_corr_ps_all, width = 15, height = 15)
pairs.panels(my_corr_ps_all[1:(length(my_corr_ps_all)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_ps_all$duet_outcome))] # foldx colours are reveresed
, pch = 21 # for bg
, jitter = T
, alpha = 1
, cex = 1.5
, cex.axis = 2
, cex.labels = 2.5
, cex.cor = 1
, smooth = F
)
dev.off()
#==================================
# Data for Correlation plots: LIG
#==================================
cols_to_select_lig = c("Ligand Affinity"
, "Log (OR)"
, "-Log (P)"
, "MAF"
, "ligand_outcome"
, drug)
corr_data_lig = bar[names(bar)%in%cols_to_select_lig]
length(cols_to_select_lig)
colnames(corr_data_lig)
start_lig = 1
end_lig = which(colnames(corr_data_lig) == drug); end_lig # should be the last column
offset_lig = 1
my_corr_lig = corr_data_lig[start_lig:(end_lig-offset_lig)]
head(my_corr_lig)
#---------------------
# Corr plot LIG: short
# data: corr_lig_df3
# cols: 7
#---------------------
cat("Corr LIG plot with coloured dots:", plot_corr_lig)
svg(plot_corr_lig, width = 15, height = 15)
pairs.panels(my_corr_lig[1:(length(my_corr_lig)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig$ligand_outcome))]
, pch = 21 # for bg
, jitter = T
, cex = 2
, cex.axis = 2
, cex.labels = 4
, cex.cor = 1
, smooth = F
)
dev.off()
corr_lig_rho = corr.test(my_corr_lig[1:4], method = "spearman")$r
corr_lig_p = corr.test(my_corr_lig[1:4], method = "spearman")$p
#---------------------
# Corr plot LIG: ALL
# data: corr_lig_df3
# cols: 9
#---------------------
end_lig_all = which(colnames(bar) == drug); end_lig_all # should be the last column
my_corr_lig_all = bar[start_lig:(end_lig_all - offset_lig)]
cols_to_drop = "Mutation"
my_corr_lig_all = my_corr_lig_all[, !(names(my_corr_lig_all)%in%cols_to_drop)]
head(my_corr_lig_all)
length(colnames(my_corr_lig_all))
cat("Corr plot LIG with coloured dots:", plot_corr_lig_all)
svg(plot_corr_lig_all, width = 15, height = 15)
pairs.panels(my_corr_lig_all[1:(length(my_corr_lig_all)-1)]
, method = "spearman" # correlation method
, hist.col = "grey" ##00AFBB
, density = TRUE # show density plots
, ellipses = F # show correlation ellipses
, stars = T
, rug = F
, breaks = "Sturges"
, show.points = T
, bg = c("#f8766d", "#00bfc4")[unclass(factor(my_corr_lig_all$ligand_outcome))] # foldx colours are reveresed
, pch = 21 # for bg
, jitter = T
, alpha = 1
, cex = 1.5
, cex.axis = 2
, cex.labels = 2.2
, cex.cor = 1
, smooth = F
)
dev.off()
######################################################################=
# End of script
######################################################################=

View file

@ -1,276 +0,0 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#===================================================================
corr_data = corr_data_extract(merged_df3, drug_name = drug)
#corr_data = corr_data_extract(merged_df2, drug_name = drug)
geneL_normal = c("pnca")
geneL_na_dy = c("gid")
geneL_na = c("rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
core_cols <- c( "Log (OR)" , "MAF", "-Log (P)"
, "DUET", "FoldX"
, "DeepDDG", "Dynamut2"
, "ASA", "RSA", "RD", "KD"
, "Consurf", "SNAP2"
#, "mutation_info_labels"
)
if (tolower(gene)%in%geneL_normal){
corrplot_cols = core_cols
}
if (tolower(gene)%in%geneL_na_dy){
additional_cols = c("mCSM-NA"
, "Dynamut"
, "ENCoM-DDG"
, "ENCoM-DDS"
, "mCSM"
, "SDM"
, "DUET-d"
, "mutation_info_labels")
corrplot_cols = c(core_cols, additional_cols)
}
if (tolower(gene)%in%geneL_na){
additional_cols = c("mCSM-NA"
, "mutation_info_labels")
corrplot_cols = c(core_cols, additional_cols)
}
if (tolower(gene)%in%geneL_ppi2){
additional_cols = c("mCSM-PPI2"
, "mutation_info_labels")
corrplot_cols = c(core_cols, additional_cols)
}
#========================================
# corrplot_cols <- c( "Log (OR)"
# , "MAF"
# , "-Log (P)"
# , "DUET"
# , "FoldX"
# , "DeepDDG"
# , "Dynamut2"
# , "mCSM-NA"
# , "Dynamut"
# , "ENCoM-DDG"
# , "ENCoM-DDS"
# , "mCSM"
# , "SDM"
# , "DUET-d"
# , "ASA"
# , "RSA"
# , "RD"
# , "KD"
# , "mutation_info_labels"
# )
corr_df <- corr_data[, corrplot_cols] # col order is according to corrplot_cols
head(corr_df); names(corr_df)
if ( all( corrplot_cols%in%names(corr_df) ) ){
cat("\nPASS: Successfully selected"
, length(corrplot_cols)
, "columns for building correlation df")
} else {
cat("\nFAIl: Something went wrong, numbers mismatch"
, "\nExpected cols:", length(corrplot_cols)
, "\nGot:", length(corr_df) )
}
#=====================================================
corrplot_df <- corr_df
# stat_df = corrplot_df[, c("Log (OR)"
# , "MAF"
# , "-Log (P)")]
plot_title <- "Correlation plots (stability)"
# Checkbox Names
# FIXME: select columns conditionally based on gene and grey out the ones that are not present!
cBCorrNames = c( "Odds Ratio"
, "Allele Frequency"
, "P-value"
, "DUET"
, "FoldX"
, "DeepDDG"
, "Dynamut2"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Consurf"
, "SNAP2"
, "Nucleic Acid affinity"
, "PPi2 affinity"
#, "Dynamut"
#, "ENCoM-Stability"
#, "ENCoM-Flexibility"
#, "mCSM"
#, "SDM"
#, "DUET-d"
)
# Checkbox Values (aka Column Names that are in corrplot_df)
cBCorrVals = c("Log (OR)"
, "MAF"
, "-Log (P)"
, "DUET"
, "FoldX"
, "DeepDDG"
, "Dynamut2"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Consurf"
, "SNAP2"
, "mCSM-NA"
, "mCSM-PPI2"
# , "Dynamut"
# , "ENCoM-DDG"
# , "ENCoM-DDS"
# , "mCSM"
# , "SDM"
# , "DUET-d"
)
# Pre-selected checkboxes
cBCorrSelected = c("Log (OR)"
, "MAF"
, "-Log (P)")
#################
# Define UI
#################
u_corr <- fluidPage(
headerPanel(plot_title),
sidebarLayout(position = "left"
, sidebarPanel(
checkboxGroupInput("variable", "Choose parameter:"
, choiceNames = cBCorrNames
, choiceValues = cBCorrVals
, selected = cBCorrSelected
)
# could be a fluid Row
, actionButton("add_col" , "Render")
, actionButton("reset_graph" , "Reset Graphs")
, actionButton("select_all" , "Select All")
)
# output/display
, mainPanel(plotOutput(outputId = 'corrplot'
, height = "1200px"
, width = "1500px")
# , height = "800px"
# , width = "600px")
, textOutput("txt")
)
)
)
#################
# Define server
#################
s_corr <- shinyServer(function(input, output, session)
{
#================
# Initial render
#================
output$corrplot <- renderPlot({
#---------------------
# My correlation plot: initial plot
#---------------------
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
, corr_cols = cBCorrSelected
, corr_method = "spearman"
, dot_size = 2
, ats = 1.5
, corr_lab_size = length(cBCorrNames)/length(cBCorrSelected) * 1.3
, corr_value_size = 1)
})
#====================
# Interactive render
#====================
observeEvent(
input$add_col, {
# select cols for corrplot
corr_cols_s <- c(input$variable)
# render plot
if (length(c(input$variable)) >= 2) {
output$corrplot <- renderPlot({
#---------------------
# My correlation plot: user selects columns
#---------------------
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
, corr_cols = corr_cols_s
, dot_size = 2
, ats = 1.5
, corr_lab_size = length(cBCorrNames)/length(corr_cols_s) * 1.3
, corr_value_size = 1)
})
} else{ output$txt = renderText({"Argh, common! It's a correlation plot. Select >=2 vars!"})
}
})
#==================================
# Add button: Select All checkbox
#==================================
observeEvent(
input$select_all,{
updateCheckboxGroupInput(session, "variable", selected = cBCorrVals)
}
)
#================
# Reset render
#================
observeEvent(
input$reset_graph,{
# reset checkboxes to default selection
updateCheckboxGroupInput(session, "variable", selected = cBCorrSelected)
# render plot
output$corrplot <- renderPlot({
#---------------------
# My correlation plot: reset plot
#---------------------
c_plot <- my_corr_pairs(corr_data_all = corrplot_df
, corr_cols = cBCorrSelected
, dot_size = 1.2
, ats = 1.5
, corr_lab_size = length(cBCorrNames)/length(cBCorrSelected) * 1.3
, corr_value_size = 1)
})
}
)
}
)
shinyApp(ui = u_corr, server = s_corr)

View file

@ -1,220 +0,0 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#===================================================================
corr_data = corr_data_extract(merged_df3, drug_name = drug)
#corr_data = corr_data_extract(merged_df2, drug_name = drug)
#================================================================
#other globals
dist_colname <- LigDist_colname # ligand_distance (from globals)
dist_cutoff <- LigDist_cutoff # 10 (from globals)
cat("\nLigand distance cut off, colname:", dist_colname
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
, "\nThe min distance", gene, "structure df" , ":", min_ang, "\u212b")
########################################################################
#==========================================
#####################
# Correlation plot
#####################
colnames(corr_df_m3_f)
corrplot_cols_lig <- c( "Log (OR)"
, "MAF"
, "-Log (P)"
, "mCSM-lig"
, "mCSM-NA"
, "ASA"
, "RSA"
, "RD"
, "KD"
, dist_colname
, "mutation_info_labels"
)
corr_df_lig <- corr_df_m3_f[, corrplot_cols_lig]
head(corr_df_lig)
corrplot_df_lig <- corr_df_lig
# static df
# stat_df = corrplot_df_lig[, c("Log (OR)"
# , "MAF"
# , "-Log (P)"
# )]
plot_title_lig <- "Correlation plots (ligand affinity)"
# Checkbox Names
cCorrNames = c( "Odds Ratio"
, "Allele Frequency"
, "P-value"
, "Ligand affinity"
, "Nucleic Acid affinity"
, "ASA"
, "RSA"
, "RD"
, "KD"
, "Ligand Distance")
# Checkbox Values (aka Column Names that are in corrplot_df_lig)
cCorrVals = c("Log (OR)"
, "MAF"
, "-Log (P)"
, "mCSM-lig"
, "mCSM-NA"
, "ASA"
, "RSA"
, "RD"
, "KD"
, dist_colname)
# Pre-selected checkboxes
cCorrSelected = c("Log (OR)"
, "MAF"
, "-Log (P)")
#============
# Define UI
#============
u_corr_lig<- fluidPage(
headerPanel(plot_title_lig),
sidebarLayout(position = "left"
, sidebarPanel("Correlations: Filtered data data"
, numericInput(inputId = "lig_dist"
, label = "Ligand distance cutoff"
, value = dist_cutoff # 10 default from globals
, min = min_ang
, max = max_ang)
, checkboxGroupInput("variable", "Choose parameter:"
, choiceNames = cCorrNames
, choiceValues = cCorrVals
, selected = cCorrSelected
)
# could be a fluid Row
, actionButton("add_col" , "Render")
, actionButton("reset_graph" , "Reset Graphs")
, actionButton("select_all" , "Select All")
)
# output/display
, mainPanel(plotOutput(outputId = 'corrplot'
, height = "1000px"
, width = "1200px")
# , height = "800px"
# , width = "600px")
, textOutput("txt")
)
)
)
#===============
# Define server
#===============
s_corr_lig <- shinyServer(function(input, output, session)
{
#================
# Initial render
#================
output$corrplot <- renderPlot({
# get the user-specified lig_list
dist_cutoff_ini = input$lig_dist
# subset data for plot
corrplot_df_lig_ini = corrplot_df_lig[corrplot_df_lig[[dist_colname]] < dist_cutoff_ini,]
#---------------------
# My correlation plot: initial plot
#---------------------
c_plot <- my_corr_pairs(
#corr_data_all = corrplot_df_lig
corr_data_all = corrplot_df_lig_ini
, corr_cols = cCorrSelected
, dot_size = 2
, ats = 1.5
, corr_lab_size = length(cCorrNames)/length(cCorrSelected) * 1.3
, corr_value_size = 1)
})
#====================
# Interactive render
#====================
observeEvent(
input$add_col, {
# get the user-specified lig_list
dist_cutoff_user = input$lig_dist
# subset data for plot
corrplot_df_lig_s = corrplot_df_lig[corrplot_df_lig[[dist_colname]] < dist_cutoff_user,]
# select cols for corrplot
corr_cols_s = c(input$variable)
# render plot
if (length(c(input$variable)) >= 2) {
output$corrplot <- renderPlot({
#---------------------
# My correlation plot: user selects columns
#---------------------
c_plot <- my_corr_pairs(corr_data_all = corrplot_df_lig_s
, corr_cols = corr_cols_s
, dot_size = 1.6
, ats = 1.5
, corr_lab_size = length(cCorrNames)/length(corr_cols_s) * 1.3
, corr_value_size = 1)
})
} else { output$txt = renderText({"Fuddu! It's a correlation plot. Select >=2 vars bewakoof!"})}
})
#==================================
# Add button: Select All checkbox
#==================================
observeEvent(
input$select_all,{
updateCheckboxGroupInput(session, "variable", selected = cCorrVals)
}
)
#================
# Reset render
#================
observeEvent(
input$reset_graph,{
# reset checkboxes
updateCheckboxGroupInput(session, "variable", selected = cCorrSelected)
# render plot
output$corrplot <- renderPlot({
#---------------------
# My correlation plot: reset plot
#---------------------
c_plot <- my_corr_pairs(corr_data_all = corrplot_df_lig
, corr_cols = cCorrSelected
, dot_size = 2
, ats = 1.5
, corr_lab_size = length(cCorrNames)/length(cCorrSelected) * 1.3
, corr_value_size = 1)
})
}
)
}
)
shinyApp(ui = u_corr_lig, server = s_corr_lig)

View file

@ -1,323 +0,0 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Corr plots for PS and Lig
# Output: 1 svg
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
require(cowplot)
source("combining_dfs_plotting.R")
#source("my_pairs_panel.R")
# should return the following dfs, directories and variables
# FIXME: Can't output from here
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#=======
# output
#=======
# can't combine by cowplot because not ggplots
#corr_plot_combined = "corr_combined.svg"
#plot_corr_plot_combined = paste0(plotdir,"/", corr_plot_combined)
# PS
#ggcorr_all_ps = "ggcorr_all_PS.svg"
ggcorr_all_ps = "ggcorr_all_PS.png"
plot_ggcorr_all_ps = paste0(plotdir,"/", ggcorr_all_ps)
# LIG
#ggcorr_all_lig = "ggcorr_all_LIG.svg"
ggcorr_all_lig = "ggcorr_all_LIG.png"
plot_ggcorr_all_lig = paste0(plotdir,"/", ggcorr_all_lig )
# combined
ggcorr_all_combined_labelled = "ggcorr_all_combined_labelled.png"
plot_ggcorr_all_combined_labelled = paste0(plotdir,"/", ggcorr_all_combined_labelled)
####################################################################
# end of loading libraries and functions #
########################################################################
#%%%%%%%%%%%%%%%%%%%%%%%%%
#df_ps = merged_df3_comp
#df_lig = merged_df3_comp_lig
merged_df3 = as.data.frame(merged_df3)
df_ps = merged_df3
df_lig = merged_df3_lig
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm( merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig, my_df_u, my_df_u_lig)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#======================
# adding log cols
#======================
# subset data to generate pairwise correlations
cols_to_select = c("duet_scaled"
, "foldx_scaled"
, "log10_or_mychisq"
, "neglog_pval_fisher"
#, "or_kin"
#, "neglog_pwald_kin"
, "af"
, "asa"
, "rsa"
, "kd_values"
, "rd_values"
, "duet_outcome"
, drug)
corr_data_ps = df_ps[, cols_to_select]
dim(corr_data_ps)
#p_italic = substitute(paste("-Log(", italic('P'), ")"));p_italic
#p_adjusted_italic = substitute(paste("-Log(", italic('P adjusted'), ")"));p_adjusted_italic
# assign nice colnames (for display)
my_corr_colnames = c("DUET"
, "Foldx"
, "Log (OR)"
, "-Log (P)"
#, "OR (adjusted)"
#, "-Log (P wald)"
, "AF"
, "ASA"
, "RSA"
, "KD"
, "RD"
, "duet_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_ps)
colnames(corr_data_ps) <- my_corr_colnames
colnames(corr_data_ps)
#------------------------
# Data for ggcorr PS plot
#------------------------
start = 1
end_ggcorr = which(colnames(corr_data_ps) == "duet_outcome"); end_ggcorr # should be the last column
offset = 1
my_ggcorr_ps = corr_data_ps[start:(end_ggcorr-1)]
head(my_ggcorr_ps)
# correlation matrix
corr1 <- round(cor(my_ggcorr_ps, method = "spearman", use = "pairwise.complete.obs"), 1)
# p-value matrix
pmat1 <- cor_pmat(my_ggcorr_ps, method = "spearman", use = "pairwise.complete.obs"
, conf.level = 0.99)
corr2 = psych::corr.test(my_ggcorr_ps
, method = "spearman"
, use = "pairwise.complete.obs")$r
corr2 = round(corr2, 1)
pmat2 = psych::corr.test(my_ggcorr_ps
, method = "spearman"
, adjust = "none"
, use = "pairwise.complete.obs")$p
corr1== corr2
pmat1==pmat2
#------------------------
# Generate ggcorr PS plot
#------------------------
cat("ggCorr plot PS:", plot_ggcorr_all_ps)
#png(filename = plot_ggcorr_all_ps, width = 1024, height = 768, units = "px", pointsize = 20)
ggcorr_ps = ggcorrplot(corr1
, p.mat = pmat1
, hc.order = TRUE
, outline.col = "black"
, ggtheme = ggplot2::theme_gray
, colors = c("#6D9EC1", "white", "#E46726")
, title = "DUET and Foldx stability")
ggcorr_ps
#dev.off()
#===========================
# Data for Correlation plots: LIG
#===========================
table(df_lig$ligand_outcome)
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
df_lig$log10_or_kin = log10(df_lig$or_kin)
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
# subset data to generate pairwise correlations
cols_to_select_lig = c("affinity_scaled"
, "log10_or_mychisq"
, "neglog_pval_fisher"
, "or_kin"
, "neglog_pwald_kin"
, "af"
, "asa"
, "rsa"
, "kd_values"
, "rd_values"
, "ligand_outcome"
, drug)
corr_data_lig = df_lig[, cols_to_select_lig]
dim(corr_data_lig)
# assign nice colnames (for display)
my_corr_colnames_lig = c("Ligand Affinity"
, "Log (OR)"
, "-Log (P)"
, "OR (adjusted)"
, "-Log(P wald)"
, "AF"
, "ASA"
, "RSA"
, "KD"
, "RD"
, "ligand_outcome"
, drug)
length(my_corr_colnames)
colnames(corr_data_lig)
colnames(corr_data_lig) <- my_corr_colnames_lig
colnames(corr_data_lig)
#------------------------
# Data for ggcorr LIG plot
#------------------------
start = 1
end_ggcorr_lig = which(colnames(corr_data_lig) == "ligand_outcome"); end_ggcorr_lig # should be the last column
offset = 1
my_ggcorr_lig = corr_data_lig[start:(end_ggcorr_lig-1)]
head(my_ggcorr_lig); str(my_ggcorr_lig)
# correlation matrix
corr1_lig <- round(cor(my_ggcorr_lig, method = "spearman", use = "pairwise.complete.obs"), 1)
# p-value matrix
pmat1_lig <- cor_pmat(my_ggcorr_lig, method = "spearman", use = "pairwise.complete.obs")
corr2_lig = psych::corr.test(my_ggcorr_lig
, method = "spearman"
, use = "pairwise.complete.obs")$r
corr2_lig = round(corr2_lig, 1)
pmat2_lig = psych::corr.test(my_ggcorr_lig
, method = "spearman"
, adjust = "none"
, use = "pairwise.complete.obs")$p
corr1_lig == corr2_lig
pmat1_lig == pmat2_lig
# for display order columns by hc order of ps
#col_order = levels(ggcorr_ps$data[2])
#col_order <- c("Species", "Petal.Width", "Sepal.Length",
#"Sepal.Width", "Petal.Length")
#my_data2 <- my_data[, col_order]
#my_data2
#------------------------
# Generate ggcorr LIG plot
#------------------------
cat("ggCorr LIG plot:", plot_ggcorr_all_lig)
#svg(plot_ggcorr_all_lig, width = 15, height = 15)
#png(plot_ggcorr_all_lig, width = 1024, height = 768, units = "px", pointsize = 20)
ggcorr_lig = ggcorrplot(corr1_lig
, p.mat = pmat1_lig
, hc.order = TRUE
, outline.col = "black"
, ggtheme = ggplot2::theme_gray
, colors = c("#6D9EC1", "white", "#E46726")
, title = "Ligand affinty")
ggcorr_lig
#dev.off()
#######################################################
#=============================
# combine plots for output
#=============================
+

View file

@ -88,7 +88,7 @@ all_cols = c(common_cols
#======= #=======
# output # output
#======= #=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
#################################### ####################################
# merged_df3: NECESSARY pre-processing # merged_df3: NECESSARY pre-processing
@ -228,6 +228,15 @@ corr_lig_colnames = c("mCSM-lig"
, drug) , drug)
corr_ppi2_colnames = c("mCSM-PPI2" corr_ppi2_colnames = c("mCSM-PPI2"
, "SNAP2"
, "Log (OR)"
, "-Log (P)"
, "interface_dist"
, "dst_mode"
, drug)
corr_conservation = c("Consurf"
, "MAF" , "MAF"
, "Log (OR)" , "Log (OR)"
, "-Log (P)" , "-Log (P)"