added extreme_muts.R

This commit is contained in:
Tanushree Tunstall 2020-09-11 16:07:23 +01:00
parent 8d9ede186c
commit 7e4be21575
2 changed files with 112 additions and 0 deletions

View file

@ -0,0 +1,108 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: producing boxplots for dr and other muts
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#source("Header_TT.R")
library(ggplot2)
library(data.table)
library(dplyr)
#=========
# Input
#=========
#source("combining_dfs_plotting.R")
# FIXME: add a separate script to add foldx values and others
source("output_tables.R")
rm(df, merged_df3_short, df_output)
#===============================================================
df_comp = df_ordered[!is.na(df_ordered$af),]
#%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df = df_comp
#%%%%%%%%%%%%%%%%%%%%%
cols_all_muts_table = c("mutationinformation"
, "mutation_info"
, "af"
, "af_percent"
, "or_mychisq"
, "pval_fisher"
, "or_kin"
, "pwald_kin"
, "duet_stability_change"
, "duet_outcome"
, "ligand_distance"
, "ligand_affinity_change"
, "ligand_outcome"
, "ddg"
, "foldx_outcome"
, "asa"
, "rsa"
, "kd_values"
, "rd_values")
df = df[,cols_all_muts_table]
#===============================================================
#Most Frequent mutation
mf = df[df$af_percent == max(df$af_percent), ]
mf
# highest OR
hor = df[df$or_mychisq == max(df$or_mychisq), ]
hor
# Most Destabilising for protein stability (DUET)
df_d = df[df$duet_outcome == "Destabilising",]
hd_duet = df_d[df_d$duet_stability_change == min(df_d$duet_stability_change), ]
hd_duet
# Most Stabilising for protein stability (DUET)
df_s = df[df$duet_outcome == "Stabilising",]
hs_duet = df_s[df_s$duet_stability_change == max(df_s$duet_stability_change), ]
hs_duet
# Closest Destabilising for protein stability
close_d = df_d[order(df_d$ligand_distance, df_d$duet_stability_change),]
# Closest Stabilising for protein stability
close_s = df_s[order(df_s$ligand_distance, df_s$duet_stability_change),]
#===============
# ligand affinity: filtered
#================
df_lig = df[df$ligand_distance<10,]
df_d_lig = df_lig[df_lig$ligand_outcome == "Destabilising",]
hd_lig= df_d_lig[df_d_lig$ligand_affinity_change == min(df_d_lig$ligand_affinity_change), ]
hd_lig
df_s_lig = df[df$ligand_outcome == "Stabilising",]
hs_lig= df_s_lig[df_s_lig$ligand_affinity_change == max(df_s_lig$ligand_affinity_change), ]
hs_lig
# Closest Destabilising for ligand affintiy
close_d_lig = df_d_lig[order(df_d_lig$ligand_distance, df_d_lig$ligand_affinity_change),]
# Closest Stabilising for ligand affinity
close_s_lig = df_s_lig[order(df_s_lig$ligand_distance, df_s_lig$ligand_affinity_change),]