sourcing plotting_data for subcols_axis_PS

This commit is contained in:
Tanushree Tunstall 2020-08-26 12:07:04 +01:00
parent b5ad53f7d1
commit 7e0bddd7d2
4 changed files with 110 additions and 90 deletions

View file

@ -3,52 +3,92 @@ setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#########################################################
# TASK:
# TASK: output barplot by position with each bar coloured by
# its stability value and active site positions indicated
# according to colour specified in "subcols_axis_PS.R"
#########################################################
#=======================================================================
############################################################
# 1: Installing and loading required packages and functions
############################################################
#source("Header_TT.R")
library(ggplot2)
library(data.table)
source("barplot_colour_function.R")
############################################################
# 2: Read file: struct params data with columns containing
# colours for axis labels
############################################################
#source("subcols_axis.R")
source("subcols_axis_PS.R")
# this should return
# should return the following dfs, directories and variables
# mut_pos_cols
# my_df
# my_df_u: df with unique mutations
# my_df_u
# my_df_u_lig
# dup_muts
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nLength of upos:", length(upos)
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
# "mut_pos_cols" is just for inspection in case you need to cross check
rm(my_df, upos, dup_muts, my_df_u_lig)
#=======================================================================
#================
# Inspecting mut_pos_cols
# position numbers and colours
# open file from deskptop ("sample_axis_cols") for cross checking
# open file from desktop ("sample_axis_cols") for cross checking
#================
table(mut_pos_cols$lab_bg)
sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
check_lab_bg = sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True
check_lab_bg
table(mut_pos_cols$lab_bg2)
sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
check_lab_bg2 = sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True
check_lab_bg2
table(mut_pos_cols$lab_fg)
sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
check_lab_fg = sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True
check_lab_fg
# sanity checks:
if (check_lab_bg && check_lab_bg2 && check_lab_fg) {
print("PASS: No. of assigned colours match length")
}else{
print("FAIL: length of assigned colours mismatch")
quit()
}
# very important!
my_axis_colours = mut_pos_cols$lab_fg
# now clear mut_pos_cols
rm(mut_pos_cols)
rm(mut_pos_cols)
#=======================================================================
#================
# Data for plots
#================
# REASSIGNMENT as necessary
df = my_df_u
# sanity checks
str(df)
###########################
# 2: Plot: DUET scores
###########################
#==========================
# Plot 2: Barplot with scores (unordered)
# corresponds to duet_outcome
@ -62,20 +102,12 @@ rm(mut_pos_cols)
# will require generating the colour scale separately.
#============================
# sanity checks
upos = unique(my_df$position)
upos = unique(df$position)
table(my_df$duet_outcome)
table(my_df_u$duet_outcome)
table(df$duet_outcome)
table(df$duet_outcome)
#===========================
# Data preparation for plots
#===========================
# REASSIGNMENT as necessary
df <- my_df_u
rm(my_df, my_df_u)
# add frequency of positions
library(data.table)
# add frequency of positions (from lib data.table)
setDT(df)[, pos_count := .N, by = .(position)]
# this is cummulative
@ -93,8 +125,8 @@ snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
# sanity checks
# should be a factor
df$duet_outcome = as.factor(df$duet_outcome)
is.factor(df$duet_outcome)
#TRUE
table(df$duet_outcome)
@ -116,13 +148,14 @@ tapply(df$duet_scaled, df$duet_outcome, max)
# check unique values in normalised data
u = unique(df$duet_scaled)
cat("No. of unique values in normalised data:", length(u))
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Run this section if rounding is to be used
# specify number for rounding
n = 3
df$duet_scaledR = round(df$duet_scaled, n)
ur = unique(df$duet_scaledR)
#n = 3
#df$duet_scaledR = round(df$duet_scaled, n)
#ur = unique(df$duet_scaledR)
# create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column
@ -158,7 +191,8 @@ my_yats = 18
#******************
# plot name and location
# outdir/ (should be imported from reading file)
print(paste0("plot will be in:", outdir))
plotdir = paste0(outdir, "/", "plots") #should be imported from reading file
print(paste0("plot will be in:", plotdir))
bp_aa_subcols_duet = "barplot_acoloured_PS.svg"
plot_bp_aa_subcols_duet = paste0(outdir, "/plots/", bp_aa_subcols_duet)