added lambda func to normalise duet and aff values
This commit is contained in:
parent
398eccd246
commit
7d2241ad81
1 changed files with 123 additions and 49 deletions
|
@ -37,7 +37,7 @@ gene_match = gene + '_p.'
|
|||
# data dir
|
||||
#==========
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
#5am0chod
|
||||
|
||||
#=======
|
||||
# input:
|
||||
#=======
|
||||
|
@ -53,22 +53,25 @@ print('Input filename:', in_filename
|
|||
# output
|
||||
#=======
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
#out_filename = gene.lower() + '.csv'
|
||||
#outfile = outdir + '/' + out_filename
|
||||
#print('Output filename:', out_filename
|
||||
# , '\nOutput path:', outdir
|
||||
# , '\n=============================================================')
|
||||
out_filename = gene.lower() + '_complex_mcsm_norm.csv'
|
||||
outfile = outdir + '/' + out_filename
|
||||
print('Output filename:', out_filename
|
||||
, '\nOutput path:', outdir
|
||||
, '\n=============================================================')
|
||||
|
||||
#=======================================================================
|
||||
|
||||
print('Reading input file')
|
||||
mcsm_data = pd.read_csv(infile, sep = ',')
|
||||
|
||||
|
||||
mcsm_data.columns
|
||||
# PredAffLog = affinity_change_log
|
||||
# "DUETStability_Kcalpermol = DUET_change_kcalpermol
|
||||
dforig_shape = mcsm_data.shape
|
||||
print('dim of infile:', dforig_shape)
|
||||
|
||||
# change colnames to reflect units and no spaces, and replace '-' with '-'
|
||||
print('Assigning meaningful colnames i.e without spaces and hyphen and reflecting units'
|
||||
, '\n===================================================================')
|
||||
my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog'
|
||||
, 'Mutation information': 'Mutationinformation'
|
||||
, 'Wild-type': 'Wild_type'
|
||||
|
@ -81,44 +84,33 @@ my_colnames_dict = {'Predicted Affinity Change': 'PredAffLog'
|
|||
|
||||
mcsm_data.rename(columns = my_colnames_dict, inplace = True)
|
||||
mcsm_data.columns
|
||||
#%%===========================================================================
|
||||
# Extract only the numeric part from col: Dis_lig_Ang
|
||||
# number: '-?\d+\.?\d*'
|
||||
mcsm_data['Dis_lig_Ang']
|
||||
print('extracting numeric part of col: Dis_lig_Ang')
|
||||
mcsm_data['Dis_lig_Ang'] = mcsm_data['Dis_lig_Ang'].str.extract('(\d+\.?\d*)')
|
||||
mcsm_data['Dis_lig_Ang']
|
||||
|
||||
# changing dtype to numeric
|
||||
#if is_numeric_dtype(mcsm_data['Dis_lig_Ang']):
|
||||
# print('Data type is already numeric, doing nothing')
|
||||
#else:
|
||||
# print('Changing dtype in col: Dis_lig_Ang to numeric since Distance should be numeric')
|
||||
## FIXME: either do it here, or in the end for all the required cols at once
|
||||
|
||||
#%%===========================================================================
|
||||
# populate mutationinformation column:mcsm style muts {WT}<POS>{MUT}
|
||||
print('populating column : Mutationinformation which is currently empty\n', mcsm_data['Mutationinformation'])
|
||||
mcsm_data['Mutationinformation'] = mcsm_data['Wild_type'] + mcsm_data['Position'].astype(str) + mcsm_data['Mutant_type']
|
||||
print('checking after populating:\n', mcsm_data['Mutationinformation'])
|
||||
print('checking after populating:\n', mcsm_data['Mutationinformation']
|
||||
, '\n===================================================================')
|
||||
|
||||
# Remove spaces b/w pasted columns
|
||||
print('removing white space within column: \Mutationinformation')
|
||||
mcsm_data['Mutationinformation'] = mcsm_data['Mutationinformation'].str.replace(' ', '')
|
||||
print('Correctly formatted column: Mutationinformation\n', mcsm_data['Mutationinformation'])
|
||||
print('Correctly formatted column: Mutationinformation\n', mcsm_data['Mutationinformation']
|
||||
, '\n===================================================================')
|
||||
#%%===========================================================================
|
||||
# very important
|
||||
print('Sanity check:'
|
||||
, '\nChecking duplicate mutations')
|
||||
if mcsm_data['Mutationinformation'].duplicated().sum() == 0:
|
||||
print('PASS: No duplicate mutations detected (as expected)'
|
||||
, '\nDim of data:', mcsm_data.shape)
|
||||
, '\nDim of data:', mcsm_data.shape
|
||||
, '\n===============================================================')
|
||||
else:
|
||||
print('FAIL (but not fatal): Duplicate mutations detected'
|
||||
, '\nDim of df with duplicates:', mcsm_data.shape
|
||||
, 'Removing duplicate entries')
|
||||
mcsm_data = mcsm_data.drop_duplicates(['Mutationinformation'])
|
||||
print('Dim of data after removing duplicate muts:', mcsm_data.shape)
|
||||
print('Dim of data after removing duplicate muts:', mcsm_data.shape
|
||||
, '\n===============================================================')
|
||||
#%%===========================================================================
|
||||
# create DUET_outcome column: classification based on DUET stability values
|
||||
print('Assigning col: DUET_outcome based on DUET stability values')
|
||||
|
@ -135,25 +127,41 @@ if DUET_pos == mcsm_data['DUET_outcome'].value_counts()['Stabilising']:
|
|||
else:
|
||||
print('FAIL: DUET outcome assigned incorrectly'
|
||||
, '\nExpected no. of stabilising mutations:', DUET_pos
|
||||
, '\nGot no. of stabilising mutations', mcsm_data['DUET_outcome'].value_counts()['Stabilising'])
|
||||
, '\nGot no. of stabilising mutations', mcsm_data['DUET_outcome'].value_counts()['Stabilising']
|
||||
, '\n===============================================================')
|
||||
#%%===========================================================================
|
||||
# Extract only the numeric part from col: Dis_lig_Ang
|
||||
# number: '-?\d+\.?\d*'
|
||||
mcsm_data['Dis_lig_Ang']
|
||||
print('extracting numeric part of col: Dis_lig_Ang')
|
||||
mcsm_data['Dis_lig_Ang'] = mcsm_data['Dis_lig_Ang'].str.extract('(\d+\.?\d*)')
|
||||
mcsm_data['Dis_lig_Ang']
|
||||
|
||||
# changing dtype to numeric
|
||||
#if is_numeric_dtype(mcsm_data['Dis_lig_Ang']):
|
||||
# print('Data type is already numeric, doing nothing')
|
||||
#else:
|
||||
# print('Changing dtype in col: Dis_lig_Ang to numeric since Distance should be numeric')
|
||||
## FIXME: either do it here, or in the end for all the required cols at once
|
||||
#%%===========================================================================
|
||||
# create Lig_outcome column: classification based on affinity change values
|
||||
# the numerical and categorical parts need to be extracted from column: PredAffLog
|
||||
# regex used
|
||||
# number: '-?\d+\.?\d*'
|
||||
# category: '\b(\w+ing)\b'
|
||||
print('Creating affinity change columns...')
|
||||
print('Extracting numerical and categorical parts from the col: PredAffLog')
|
||||
#aff_regex = re.compile(r'\b(\w+ing)\b')
|
||||
print('to create two columns: affinity_change_log and Lig_outcome'
|
||||
, '\n===================================================================')
|
||||
|
||||
# Extracting the predicted affinity change (numerical part)
|
||||
mcsm_data['affinity_change_log'] = mcsm_data['PredAffLog'].str.extract('(-?\d+\.?\d*)', expand = True)
|
||||
print(mcsm_data['affinity_change_log'])
|
||||
|
||||
# Extracting the categorical part (Destabillizing and Stabilizing) using word boundary ('ing')
|
||||
#aff_regex = re.compile(r'\b(\w+ing)\b')
|
||||
mcsm_data['Lig_outcome']= mcsm_data['PredAffLog'].str.extract(r'(\b\w+ing\b)', expand = True)
|
||||
print(mcsm_data['Lig_outcome'])
|
||||
print(mcsm_data['Lig_outcome'].value_counts())
|
||||
american_spl = mcsm_data['Lig_outcome'].value_counts()
|
||||
|
||||
print('Changing to Bristish spellings for col: Lig_outcome')
|
||||
mcsm_data['Lig_outcome'].replace({'Destabilizing': 'Destabilising', 'Stabilizing': 'Stabilising'}, inplace = True)
|
||||
print(mcsm_data['Lig_outcome'].value_counts())
|
||||
|
@ -161,34 +169,100 @@ british_spl = mcsm_data['Lig_outcome'].value_counts()
|
|||
|
||||
# since series object will have different names on account of our spelling change
|
||||
# use .equals
|
||||
if american_spl.equals(british_spl):
|
||||
print('PASS: spelling change successfull')
|
||||
check = american_spl.values == british_spl.values
|
||||
if check.all():
|
||||
print('PASS: spelling change successfull'
|
||||
, '\nNo. of predicted affinity changes:\n', british_spl
|
||||
, '\n===============================================================')
|
||||
else:
|
||||
print('FAIL: spelling change unsucessfull'
|
||||
, '\nExpected:\n', american_spl
|
||||
, '\nGot:\n', british_spl)
|
||||
, '\nGot:\n', british_spl
|
||||
, '\n===============================================================')
|
||||
#%%===========================================================================
|
||||
# check dtype in cols
|
||||
print(mcsm_data.dtypes)
|
||||
print('Checking dtypes in all columns:\n', mcsm_data.dtypes
|
||||
, '\n===================================================================')
|
||||
print('Converting the following cols to numeric:'
|
||||
, '\nDis_lig_Ang'
|
||||
, '\nDUET_change_kcalpermol'
|
||||
, '\naffinity_change_log'
|
||||
, '\n===================================================================')
|
||||
# using apply method to change stabilty and affinity values to numeric
|
||||
mcsm_data[['affinity_change_log'
|
||||
, 'DUET_change_kcalpermol'
|
||||
, 'Dis_lig_Ang']] = mcsm_data[['affinity_change_log'
|
||||
, 'DUET_change_kcalpermol'
|
||||
, 'Dis_lig_Ang']].apply(pd.to_numeric)
|
||||
numeric_cols = ['DUET_change_kcalpermol', 'affinity_change_log', 'Dis_lig_Ang']
|
||||
mcsm_data[numeric_cols] = mcsm_data[numeric_cols].apply(pd.to_numeric)
|
||||
# check dtype in cols
|
||||
print('checking dtype after conversion')
|
||||
cols_check = mcsm_data.select_dtypes(include='float64').columns.isin(numeric_cols)
|
||||
if cols_check.all():
|
||||
print('PASS: dtypes for selected cols:', numeric_cols
|
||||
, '\nchanged to numeric'
|
||||
, '\n===============================================================')
|
||||
else:
|
||||
print('FAIL:dtype change to numeric for selected cols unsuccessful'
|
||||
, '\n===============================================================')
|
||||
#mcsm_data['Dis_lig_Ang', 'affinity_change_log'].apply(is_numeric_dtype(mcsm_data['Dis_lig_Ang', 'affinity_change_log']))
|
||||
print(mcsm_data.dtypes)
|
||||
|
||||
#%%===========================================================================
|
||||
|
||||
#%%===========================================================================
|
||||
# Normalise the DUET and affinity change cols
|
||||
#converter = lambda x : x*2 if x < 10 else (x*3 if x < 20 else x)
|
||||
duet_min = mcsm_data['DUET_change_kcalpermol'].min()
|
||||
duet_max = mcsm_data['DUET_change_kcalpermol'].max()
|
||||
|
||||
converter = lambda x : x/abs(duet_min) if x < 0 else (x/duet_max if x >= 0 else 'failed')
|
||||
|
||||
mcsm_data['DUET_change_kcalpermol']
|
||||
mcsm_data['ratioDUET'] = mcsm_data['DUET_change_kcalpermol'].apply(converter)
|
||||
mcsm_data['ratioDUET']
|
||||
#%%===========================================================================
|
||||
# Normalise the affinity change cols
|
||||
aff_min = mcsm_data['affinity_change_log'].min()
|
||||
aff_max = mcsm_data['affinity_change_log'].max()
|
||||
|
||||
converter = lambda x : x/abs(aff_min) if x < 0 else (x/aff_max if x >= 0 else 'failed')
|
||||
#converter(mcsm_data['affinity_change_log'])
|
||||
|
||||
mcsm_data['affinity_change_log']
|
||||
mcsm_data['ratioPredAff'] = mcsm_data['affinity_change_log'].apply(converter)
|
||||
mcsm_data['ratioPredAff']
|
||||
#=============================================================================
|
||||
# Removing PredAff log column as it is not needed?
|
||||
print('Removing col: PredAffLog since relevant info has been extracted from it')
|
||||
mcsm_dataf = mcsm_data.drop(columns = ['PredAffLog'])
|
||||
#%%===========================================================================
|
||||
expected_cols_toadd = 4
|
||||
dforig_len = dforig_shape[1]
|
||||
expected_cols = dforig_len + expected_cols_toadd
|
||||
if len(mcsm_dataf.columns) == expected_cols:
|
||||
print('PASS: formatting successful'
|
||||
, '\nformatted df has expected no. of cols:', expected_cols
|
||||
, '\n---------------------------------------------------------------'
|
||||
, '\ncolnames:', mcsm_dataf.columns
|
||||
, '\n----------------------------------------------------------------'
|
||||
, '\ndtypes in cols:', mcsm_dataf.dtypes
|
||||
, '\n----------------------------------------------------------------'
|
||||
, '\norig data shape:', dforig_shape
|
||||
, '\nformatted df shape:', mcsm_dataf.shape
|
||||
, '\n===============================================================')
|
||||
else:
|
||||
print('FAIL: something went wrong in formatting df'
|
||||
, '\nExpected no. of cols:', expected_cols
|
||||
, '\nGot no. of cols:', len(mcsm_dataf.columns)
|
||||
, '\nCheck formatting'
|
||||
, '\n===============================================================')
|
||||
#%%============================================================================
|
||||
# writing file
|
||||
print('Writing formatted df to csv')
|
||||
mcsm_dataf.to_csv(outfile, index = False)
|
||||
|
||||
|
||||
|
||||
#%%===========================================================================
|
||||
# Normalise the DUET and affinity change cols:
|
||||
|
||||
|
||||
|
||||
|
||||
print('Finished writing file:'
|
||||
, '\nFilename:', out_filename
|
||||
, '\nPath:', outdir
|
||||
, '\nExpected no. of rows:', len(mcsm_dataf)
|
||||
, '\nExpected no. of cols:', len(mcsm_dataf.columns)
|
||||
, '\n=============================================================')
|
||||
#%%
|
||||
#End of script
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue