sorting the ensemble and priority for ligand affinity
This commit is contained in:
parent
f3710bfaf5
commit
79c261963b
2 changed files with 66 additions and 59 deletions
|
@ -1,20 +1,31 @@
|
||||||
#source("~/git/LSHTM_analysis/config/pnca.R")
|
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||||
source("~/git/LSHTM_analysis/config/alr.R")
|
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||||
source("~/git/LSHTM_analysis/config/gid.R")
|
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
|
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||||
|
source("~/git/LSHTM_analysis/config/rpob.R")
|
||||||
|
|
||||||
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
source("/home/tanu/git/LSHTM_analysis/my_header.R")
|
||||||
#########################################################
|
#########################################################
|
||||||
# TASK: Generate averaged stability values
|
# TASK: Generate averaged affinity values
|
||||||
# across all stability tools
|
# across all affinity tools for a given structure
|
||||||
# for a given structure
|
# as applicable...
|
||||||
#########################################################
|
#########################################################
|
||||||
|
|
||||||
#=======
|
#=======
|
||||||
# output
|
# output
|
||||||
#=======
|
#=======
|
||||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
|
||||||
outfile_mean_ens_st_aff = paste0(outdir_images, "/", tolower(gene)
|
|
||||||
, "_mean_ens_stab_aff.csv")
|
#OutFile1
|
||||||
print(paste0("Output file:", outfile_mean_ens_st_aff))
|
outfile_mean_aff = paste0(outdir_images, "/", tolower(gene)
|
||||||
|
, "_mean_affinity_all.csv")
|
||||||
|
print(paste0("Output file:", outfile_mean_aff))
|
||||||
|
|
||||||
|
#OutFile2
|
||||||
|
outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene)
|
||||||
|
, "_mean_affinity_priority.csv")
|
||||||
|
print(paste0("Output file:", outfile_mean_aff_priorty))
|
||||||
|
|
||||||
#%%===============================================================
|
#%%===============================================================
|
||||||
|
|
||||||
|
@ -53,48 +64,49 @@ common_cols = c("mutationinformation"
|
||||||
, "sensitivity"
|
, "sensitivity"
|
||||||
, "ligand_distance")
|
, "ligand_distance")
|
||||||
|
|
||||||
# ADD the ones for mcsm_na etc
|
|
||||||
#optional_cols = c()
|
|
||||||
|
|
||||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||||
#TODO: affinity_cols
|
|
||||||
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
||||||
,"deepddg_scaled" , "deepddg"
|
, "deepddg_scaled" , "deepddg"
|
||||||
,"ddg_dynamut2_scaled" , "ddg_dynamut2"
|
, "ddg_dynamut2_scaled" , "ddg_dynamut2"
|
||||||
,"foldx_scaled" , "ddg_foldx"
|
, "foldx_scaled" , "ddg_foldx"
|
||||||
|
, "affinity_scaled" , "ligand_affinity_change"
|
||||||
|
, "mmcsm_lig_scaled" , "mmcsm_lig"
|
||||||
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
||||||
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
||||||
#,"consurf_scaled" , "consurf_score"
|
#, "consurf_scaled" , "consurf_score"
|
||||||
#,"snap2_scaled" , "snap2_score"
|
#, "snap2_scaled" , "snap2_score"
|
||||||
#,"provean_scaled" , "provean_score"
|
#, "provean_scaled" , "provean_score"
|
||||||
#,"affinity_scaled" , "ligand_affinity_change"
|
|
||||||
#,"mmcsm_lig_scaled" , "mmcsm_lig"
|
|
||||||
)
|
)
|
||||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||||
outcome_cols = c("duet_outcome"
|
outcome_cols_aff = c("duet_outcome"
|
||||||
, "deepddg_outcome"
|
, "deepddg_outcome"
|
||||||
, "ddg_dynamut2_outcome"
|
, "ddg_dynamut2_outcome"
|
||||||
, "foldx_outcome"
|
, "foldx_outcome"
|
||||||
#, "ddg_foldx", "foldx_scaled"
|
#, "ddg_foldx", "foldx_scaled"
|
||||||
|
, "ligand_outcome"
|
||||||
|
, "mmcsm_lig_outcome"
|
||||||
|
, "mcsm_ppi2_outcome"
|
||||||
|
, "mcsm_na_outcome"
|
||||||
# consurf outcome doesn't exist
|
# consurf outcome doesn't exist
|
||||||
#,"provean_outcome"
|
#,"provean_outcome"
|
||||||
#,"snap2_outcome"
|
#,"snap2_outcome"
|
||||||
#,"ligand_outcome"
|
|
||||||
#,"mmcsm_lig_outcome"
|
|
||||||
#, "mcsm_ppi2_outcome"
|
|
||||||
#, "mcsm_na_outcome"
|
|
||||||
)
|
)
|
||||||
|
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
|
||||||
|
, scaled_cols
|
||||||
|
, outcome_cols_aff)]
|
||||||
|
|
||||||
|
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
|
||||||
|
, outcome_cols_aff)]
|
||||||
|
|
||||||
##############################################################
|
##############################################################
|
||||||
#####################
|
#####################
|
||||||
# Ensemble stability
|
# Ensemble affinity
|
||||||
#####################
|
#####################
|
||||||
# extract outcome cols and map numeric values to the categories
|
# extract outcome cols and map numeric values to the categories
|
||||||
# Destabilising == 1, and stabilising == 0
|
# Destabilising == 1, and stabilising == 0
|
||||||
df3_plot = df3[, cols_to_extract]
|
df3_plot = df3[, cols_to_extract]
|
||||||
|
|
||||||
df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
|
df3_plot[, outcome_cols_aff] <- sapply(df3_plot[, outcome_cols_aff]
|
||||||
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
, function(x){ifelse(x == "Destabilising", 0, 1)})
|
||||||
|
|
||||||
#=====================================
|
#=====================================
|
||||||
|
@ -104,7 +116,7 @@ df3_plot[, outcome_cols] <- sapply(df3_plot[, outcome_cols]
|
||||||
|
|
||||||
# column to average: ens_stability
|
# column to average: ens_stability
|
||||||
#=====================================
|
#=====================================
|
||||||
cols_to_average = which(colnames(df3_plot)%in%outcome_cols)
|
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_aff)
|
||||||
|
|
||||||
# ensemble average across predictors
|
# ensemble average across predictors
|
||||||
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
|
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
|
||||||
|
@ -166,8 +178,8 @@ outcome_cols_affinity = colnames(df3)[colnames(df3)%in%affinity_outcome_colnames
|
||||||
outcome_cols_affinity = c("ligand_outcome"
|
outcome_cols_affinity = c("ligand_outcome"
|
||||||
,"mmcsm_lig_outcome")
|
,"mmcsm_lig_outcome")
|
||||||
|
|
||||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols, outcome_cols_affinity)]
|
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols, outcome_cols_aff, outcome_cols_affinity)]
|
||||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)]
|
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols_aff)]
|
||||||
|
|
||||||
foo = df3[, cols_to_consider]
|
foo = df3[, cols_to_consider]
|
||||||
df3_plot_orig = df3[, cols_to_extract]
|
df3_plot_orig = df3[, cols_to_extract]
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
source("~/git/LSHTM_analysis/config/pnca.R")
|
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||||
#source("~/git/LSHTM_analysis/config/embb.R")
|
#source("~/git/LSHTM_analysis/config/embb.R")
|
||||||
|
@ -57,38 +57,33 @@ common_cols = c("mutationinformation"
|
||||||
, "sensitivity"
|
, "sensitivity"
|
||||||
, "ligand_distance")
|
, "ligand_distance")
|
||||||
|
|
||||||
# ADD the ones for mcsm_na etc
|
|
||||||
#optional_cols = c()
|
|
||||||
|
|
||||||
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
|
||||||
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
scaled_cols = c("duet_scaled" , "duet_stability_change"
|
||||||
,"deepddg_scaled" , "deepddg"
|
, "deepddg_scaled" , "deepddg"
|
||||||
,"ddg_dynamut2_scaled" , "ddg_dynamut2"
|
, "ddg_dynamut2_scaled" , "ddg_dynamut2"
|
||||||
,"foldx_scaled" , "ddg_foldx"
|
, "foldx_scaled" , "ddg_foldx"
|
||||||
|
, "affinity_scaled" , "ligand_affinity_change"
|
||||||
|
, "mmcsm_lig_scaled" , "mmcsm_lig"
|
||||||
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
, "mcsm_ppi2_scaled" , "mcsm_ppi2_affinity"
|
||||||
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
, "mcsm_na_scaled" , "mcsm_na_affinity"
|
||||||
#,"consurf_scaled" , "consurf_score"
|
#, "consurf_scaled" , "consurf_score"
|
||||||
#,"snap2_scaled" , "snap2_score"
|
#, "snap2_scaled" , "snap2_score"
|
||||||
#,"provean_scaled" , "provean_score"
|
#, "provean_scaled" , "provean_score"
|
||||||
#,"affinity_scaled" , "ligand_affinity_change"
|
)
|
||||||
#,"mmcsm_lig_scaled" , "mmcsm_lig"
|
|
||||||
)
|
|
||||||
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
|
||||||
outcome_cols = c("duet_outcome"
|
outcome_cols_aff = c("duet_outcome"
|
||||||
, "deepddg_outcome"
|
, "deepddg_outcome"
|
||||||
, "ddg_dynamut2_outcome"
|
, "ddg_dynamut2_outcome"
|
||||||
, "foldx_outcome"
|
, "foldx_outcome"
|
||||||
#, "ddg_foldx", "foldx_scaled"
|
#, "ddg_foldx", "foldx_scaled"
|
||||||
|
, "ligand_outcome"
|
||||||
# consurf outcome doesn't exist
|
, "mmcsm_lig_outcome"
|
||||||
#,"provean_outcome"
|
, "mcsm_ppi2_outcome"
|
||||||
#,"snap2_outcome"
|
, "mcsm_na_outcome"
|
||||||
#,"ligand_outcome"
|
# consurf outcome doesn't exist
|
||||||
#,"mmcsm_lig_outcome"
|
#,"provean_outcome"
|
||||||
#, "mcsm_ppi2_outcome"
|
#,"snap2_outcome"
|
||||||
#, "mcsm_na_outcome"
|
)
|
||||||
)
|
|
||||||
|
|
||||||
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols,outcome_cols)]
|
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols, scaled_cols,outcome_cols)]
|
||||||
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)]
|
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols, outcome_cols)]
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue