added script to test af_or_calcs

This commit is contained in:
Tanushree Tunstall 2021-06-11 13:33:25 +01:00
parent 931f8ec2f9
commit 7686aa39b4
3 changed files with 55 additions and 0 deletions

View file

@ -1,254 +0,0 @@
my_afor <- function ( infile_master
, infile_metadata
, outfile
, drug
, gene
, idcol = "id"
, dr_muts_col
, other_muts_col){
#===========================================
# 1: Read master/raw data stored in Data/
#===========================================
raw_data_all = read.csv(infile_master, stringsAsFactors = F)
cat("\nExtracting columns based on variables:\n"
, drug
, "\n"
, dr_muts_col
, "\n"
, other_muts_col
, "\n===============================================================")
raw_data = raw_data_all[,c(idcol
, drug
, dr_muts_col
, other_muts_col)]
#rm(raw_data_all)
#rm(indir, in_filename_master, infile_master)
#-------------------
# 1a: exclude na
#--------------------
raw_data = raw_data[!is.na(raw_data[[drug]]),]
total_samples = length(unique(raw_data[[idcol]]))
cat(paste0("\nTotal samples without NA in", " ", drug, " is:", total_samples))
# sanity check: should be true
cat("\nThis should be True:\n"
, is.numeric(total_samples))
#----------------------------------------
# 1b: combine the two mutation columns
#-----------------------------------------
all_muts_colname = paste0("all_mutations_", drug)
cat(paste("\nNew column added:", all_muts_colname))
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
head(raw_data[[all_muts_colname]])
#----------------------------------------------
# 1c: create yet another column that contains
# all the mutations but in lower case
#-----------------------------------------------
head(raw_data[[all_muts_colname]])
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
head(raw_data$all_muts_gene)
# sanity checks
gene_match = paste0(gene,"_p.")
cat(paste0("\nconverting gene match: ", gene_match, " ", "to lowercase\n"))
gene_match = tolower(gene_match)
table(grepl(gene_match,raw_data$all_muts_gene))
# sanity check: should be TRUE
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
cat("\nPASS: Total no. of samples match\n")
} else{
cat("\nFAIL: No. of samples mismatch\n")
exit()
}
#====================================================
# 2: Read valid snps for which OR
# can be calculated
#=====================================================
cat(paste0("\nReading gene associated metadata:", infile_metadata))
gene_metadata = read.csv(infile_metadata
, stringsAsFactors = F
, header = T)
cat(paste("\nDim of gene_metadata:\n"
, dim(gene_metadata)))
# count na in drug column
tot_drug_na = sum(is.na(gene_metadata[[drug]]))
expected_rows = nrow(gene_metadata) - tot_drug_na
# drop na from the drug column
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
# sanity check
if(nrow(gene_snps_or) == expected_rows){
cat("\nPASS: no. of rows match with expected_rows")
} else{
cat("\nFAIL: nrows mismatch.")
exit()
}
# extract unique snps to iterate over for AF and OR calcs
gene_snps_unique = unique(gene_snps_or$mutation)
cat(paste0("\nTotal no. of distinct comp snps to perform OR calcs: ", length(gene_snps_unique)))
#==================================================
# OR calcs using the following 4
#1) logistic
#2) custom chisq.test
#3) fisher
#4) chisq.test
# adjusted logistic (NO good)
# kinship (separate script)
#=================================================
#snps <- gene_snps_unique [1:5] # small test
snps <- gene_snps_unique
cat(paste0("\nRunning calculations for:"
, length(snps), " nssnps\n"
, "\ngene: ", gene
, "\ndrug: ", drug ))
# DV: <drug> 0 or 1
dst = raw_data[[drug]]
# initialise an empty df
ors_df = data.frame()
x = sapply(snps,function(m){
mut = grepl(m,raw_data$all_muts_gene)
mut = as.numeric(mut)
cat(paste0("\nRunning mutation:", m, "\n"))
model<-glm(dst ~ mut, family = binomial)
#-------------------
# allele frequency
#-------------------
afs = mean(mut)
#-------------------
# logistic model
#-------------------
beta_logistic = summary(model)$coefficients[2,1]
or_logistic = exp(summary(model)$coefficients[2,1])
#print(paste0("logistic OR:", or_logistic))
pval_logistic = summary(model)$coefficients[2,4]
#print(paste0("logistic pval:", pval_logistic))
se_logistic = summary(model)$coefficients[2,2]
#print(paste0("logistic SE:", se_logistic))
zval_logistic = summary(model)$coefficients[2,3]
#print(paste0("logistic zval:", zval_logistic))
ci_mod = exp(confint(model))[2,]
#print(paste0("logistic CI:", ci_mod))
ci_lower_logistic = ci_mod[["2.5 %"]]
ci_upper_logistic = ci_mod[["97.5 %"]]
#-------------------
# custom_chisq and fisher: OR p-value and CI
#-------------------
or_mychisq = mychisq_or(dst, mut)
#print(paste0("mychisq OR:", or_mychisq))
odds_fisher = fisher.test(table(dst, mut))$estimate
or_fisher = odds_fisher[[1]]
pval_fisher = fisher.test(table(dst, mut))$p.value
ci_lower_fisher = fisher.test(table(dst, mut))$conf.int[1]
ci_upper_fisher = fisher.test(table(dst, mut))$conf.int[2]
#-------------------
# chi sq estimates
#-------------------
estimate_chisq = chisq.test(table(dst, mut))$statistic; estimate_chisq
est_chisq = estimate_chisq[[1]]; print(est_chisq)
pval_chisq = chisq.test(table(dst, mut))$p.value
# build a row to append to df
row = data.frame(mutation = m
, af = afs
, beta_logistic = beta_logistic
, or_logistic = or_logistic
, pval_logistic = pval_logistic
, se_logistic = se_logistic
, zval_logistic = zval_logistic
, ci_low_logistic = ci_lower_logistic
, ci_hi_logistic = ci_upper_logistic
, or_mychisq = or_mychisq
, or_fisher = or_fisher
, pval_fisher = pval_fisher
, ci_low_fisher= ci_lower_fisher
, ci_hi_fisher = ci_upper_fisher
, est_chisq = est_chisq
, pval_chisq = pval_chisq
)
ors_df <<- rbind(ors_df, row)
})
#==============================================
# Writing file with calculated ORs and AFs
#==============================================
cat(paste0("\nwriting output file: "
, "\nFile: ", outfile))
write.csv(ors_df, outfile
, row.names = F)
cat(paste0("\nFinished writing:"
, outfile
, "\nNo. of rows: ", nrow(ors_df)
, "\nNo. of cols: ", ncol(ors_df)))
cat("\n======sneak peek into a few muts with prominent or and p-vals=======\n")
cat(paste0("======================================="
, "\nmutation with highest logistic OR:"
, "\n=======================================\n"))
print(ors_df[which(ors_df$or_logistic == max(ors_df$or_logistic)),])
cat(paste0("======================================="
, "\nmutation with highest mychisq OR:"
, "\n=======================================\n"))
print(ors_df[which(ors_df$or_mychisq == max(ors_df$or_mychisq)),])
# gives too many due to Inf
#cat(paste0("======================================="
#, "\nmutation with highest fisher OR:"
#, "\n=======================================\n"))
#print(ors_df[which(ors_df$or_fisher == max(ors_df$or_fisher)),])
cat(paste0("======================================="
, "\nmutation with lowest logistic pval:"
, "\n=======================================\n"))
print(ors_df[which(ors_df$pval_logistic == min(ors_df$pval_logistic)),])
cat(paste0("======================================="
, "\nmutation with lowest fisher pval:"
, "\n=======================================\n"))
print(ors_df[which(ors_df$pval_fisher == min(ors_df$pval_fisher)),])
################################################################
cat("\nEnd of script: calculated AF, OR, pvalues and saved file\n")
#################################################################
}