oops!
This commit is contained in:
parent
c09d7530c9
commit
6f354ab390
10 changed files with 833 additions and 285 deletions
366
scripts/plotting/plotting_thesis/corr_plots_thesis_ggpairs.R
Normal file
366
scripts/plotting/plotting_thesis/corr_plots_thesis_ggpairs.R
Normal file
|
@ -0,0 +1,366 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#source("~/git/LSHTM_analysis/config/alr.R")
|
||||
source("~/git/LSHTM_analysis/config/embb.R")
|
||||
#source("~/git/LSHTM_analysis/config/katg.R")
|
||||
#source("~/git/LSHTM_analysis/config/gid.R")
|
||||
#source("~/git/LSHTM_analysis/config/pnca.R")
|
||||
#source("~/git/LSHTM_analysis/config/rpob.R")
|
||||
|
||||
# get plottting dfs
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
|
||||
####################################################
|
||||
|
||||
# ggpairs wrapper
|
||||
|
||||
my_gg_pairs=function(plot_df){
|
||||
ggpairs(plot_df, columns = 1:(ncol(plot_df)-1),
|
||||
upper = list(continuous = wrap('cor',
|
||||
method = "spearman",
|
||||
title="ρ",
|
||||
digits=2,
|
||||
title_args=c(colour="black")
|
||||
)
|
||||
),
|
||||
lower = list(
|
||||
continuous = wrap("points", alpha = 0.7, size=0.5),
|
||||
combo = wrap("dot", alpha = 0.7, size=0.5)
|
||||
),
|
||||
aes(colour = factor(ifelse(plot_df$dst_mode==0, "S", "R")), alpha = 0.5),
|
||||
title="Stability") +
|
||||
|
||||
scale_colour_manual(values = c("red", "blue")) +
|
||||
scale_fill_manual(values = c("red", "blue")) +
|
||||
theme(
|
||||
text = element_text(size=12, face="bold")
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
|
||||
|
||||
#=======
|
||||
# Input
|
||||
#=======
|
||||
merged_df3 = as.data.frame(merged_df3)
|
||||
corr_plotdf = corr_data_extract(merged_df3
|
||||
, gene = gene
|
||||
, drug = drug
|
||||
, extract_scaled_cols = F)
|
||||
colnames(corr_plotdf)
|
||||
|
||||
if (all(colnames(corr_df_m3_f) == colnames(corr_plotdf))){
|
||||
cat("PASS: corr plot colnames match for dashboard")
|
||||
}else{
|
||||
stop("Abort: corr plot colnames DO NOT match for dashboard")
|
||||
}
|
||||
|
||||
#corr_plotdf = corr_df_m3_f #for downstream code
|
||||
|
||||
aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))]
|
||||
aff_dist_cols
|
||||
|
||||
|
||||
static_cols = c("Log10(MAF)"
|
||||
, "Log10(OR)"
|
||||
#, "-Log10(P)"
|
||||
)
|
||||
|
||||
#================
|
||||
# stability
|
||||
#================
|
||||
#affinity_dist_colnames# lIg DIst and ppi Di
|
||||
corr_ps_colnames = c(static_cols
|
||||
, "DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
, aff_dist_cols
|
||||
, "dst_mode")
|
||||
|
||||
if (all(corr_ps_colnames%in%colnames(corr_plotdf))){
|
||||
cat("PASS: all colnames exist for correlation")
|
||||
}else{
|
||||
stop("Abort: all colnames DO NOT exist for correlation")
|
||||
}
|
||||
corr_df_ps = corr_plotdf[, corr_ps_colnames]
|
||||
complete_obs_ps = nrow(corr_df_ps) - sum(is.na(corr_df_ps$`Log(OR)`))
|
||||
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_ps)
|
||||
|
||||
color_coln = which(colnames(corr_df_ps) == "dst_mode")
|
||||
#end = which(colnames(corr_df_ps) == drug)
|
||||
#ncol_omit = 2
|
||||
#corr_end = end-ncol_omit
|
||||
corr_end = color_coln-1
|
||||
|
||||
#------------------------
|
||||
# Output: stability corrP
|
||||
#------------------------
|
||||
corr_psP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_stability.svg" )
|
||||
|
||||
cat("Corr plot stability with coloured dots:", corr_psP)
|
||||
svg(corr_psP, width = 15, height = 15)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_ps
|
||||
, corr_cols = colnames(corr_df_ps[1:corr_end])
|
||||
, corr_method = "spearman"
|
||||
, colour_categ_col = colnames(corr_df_ps[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 1.6
|
||||
, ats = 1.5
|
||||
, corr_lab_size =2.5
|
||||
, corr_value_size = 1)
|
||||
|
||||
dev.off()
|
||||
#===============
|
||||
# CONSERVATION
|
||||
#==============
|
||||
corr_conservation_cols = c( static_cols
|
||||
, "ConSurf"
|
||||
, "SNAP2"
|
||||
, "PROVEAN"
|
||||
, aff_dist_cols
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
if (all(corr_conservation_cols%in%colnames(corr_plotdf))){
|
||||
cat("PASS: all colnames exist for ConSurf-correlation")
|
||||
}else{
|
||||
stop("Abort: all colnames DO NOT exist for ConSurf-correlation")
|
||||
}
|
||||
|
||||
corr_df_cons = corr_plotdf[, corr_conservation_cols]
|
||||
complete_obs_cons = nrow(corr_df_cons) - sum(is.na(corr_df_cons$`Log(OR)`))
|
||||
cat("\nComplete muts for Conservation for", gene, ":", complete_obs_cons)
|
||||
|
||||
color_coln = which(colnames(corr_df_cons) == "dst_mode")
|
||||
# end = which(colnames(corr_df_cons) == drug)
|
||||
# ncol_omit = 2
|
||||
# corr_end = end-ncol_omit
|
||||
corr_end = color_coln-1
|
||||
|
||||
|
||||
#---------------------------
|
||||
# Output: Conservation corrP
|
||||
#----------------------------
|
||||
corr_consP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_conservation.svg" )
|
||||
|
||||
cat("Corr plot conservation coloured dots:", corr_consP)
|
||||
svg(corr_consP, width = 10, height = 10)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_cons
|
||||
, corr_cols = colnames(corr_df_cons[1:corr_end])
|
||||
, corr_method = "spearman"
|
||||
, colour_categ_col = colnames(corr_df_cons[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size =1.1
|
||||
, ats = 1.5
|
||||
, corr_lab_size = 1.8
|
||||
, corr_value_size = 1)
|
||||
|
||||
dev.off()
|
||||
|
||||
#####################################################
|
||||
#DistCutOff = 10
|
||||
#LigDist_colname # = "ligand_distance" # from globals
|
||||
#ppi2Dist_colname = "interface_dist"
|
||||
#naDist_colname = "TBC"
|
||||
#####################################################
|
||||
|
||||
#================
|
||||
# ligand affinity
|
||||
#================
|
||||
corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]<DistCutOff,]
|
||||
|
||||
corr_lig_colnames = c(static_cols
|
||||
, "mCSM-lig"
|
||||
, "mmCSM-lig"
|
||||
, "dst_mode")
|
||||
#, drug)
|
||||
|
||||
if (all(corr_lig_colnames%in%colnames(corr_plotdf))){
|
||||
cat("PASS: all colnames exist for Lig-correlation")
|
||||
}else{
|
||||
stop("Abort: all colnames DO NOT exist for Lig-correlation")
|
||||
}
|
||||
|
||||
corr_df_lig = corr_plotdf[, corr_lig_colnames]
|
||||
complete_obs_lig = nrow(corr_df_lig) - sum(is.na(corr_df_lig$`Log(OR)`))
|
||||
cat("\nComplete muts for lig affinity for", gene, ":", complete_obs_lig)
|
||||
|
||||
color_coln = which(colnames(corr_df_lig) == "dst_mode")
|
||||
# end = which(colnames(corr_df_lig) == drug)
|
||||
# ncol_omit = 2
|
||||
# corr_end = end-ncol_omit
|
||||
corr_end = color_coln-1
|
||||
|
||||
#------------------------
|
||||
# Output: ligand corrP
|
||||
#------------------------
|
||||
corr_ligP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_lig.svg" )
|
||||
|
||||
cat("Corr plot affinity with coloured dots:", corr_ligP)
|
||||
svg(corr_ligP, width = 10, height = 10)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_lig
|
||||
, corr_cols = colnames(corr_df_lig[1:corr_end])
|
||||
, corr_method = "spearman"
|
||||
, colour_categ_col = colnames(corr_df_lig[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size =3
|
||||
, corr_value_size = 1)
|
||||
dev.off()
|
||||
####################################################
|
||||
#================
|
||||
# ppi2 affinity
|
||||
#================
|
||||
|
||||
if (tolower(gene)%in%geneL_ppi2){
|
||||
|
||||
corr_df_ppi2 = corr_plotdf[corr_plotdf["PPI-Dist"]<DistCutOff,]
|
||||
|
||||
corr_ppi2_colnames = c(static_cols
|
||||
, "mCSM-PPI2"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
if (all(corr_ppi2_colnames%in%colnames(corr_plotdf))){
|
||||
cat("PASS: all colnames exist for mcsm-ppi2 correlation")
|
||||
}else{
|
||||
stop("Abort: all colnames DO NOT exist for mcsm-ppi2 correlation")
|
||||
}
|
||||
|
||||
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
||||
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
||||
cat("\nComplete muts for ppi2 affinity for", gene, ":", complete_obs_ppi2)
|
||||
|
||||
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
||||
# end = which(colnames(corr_df_ppi2) == drug)
|
||||
# ncol_omit = 2
|
||||
# corr_end = end-ncol_omit
|
||||
corr_end = color_coln-1
|
||||
|
||||
#------------------------
|
||||
# Output: ppi2 corrP
|
||||
#------------------------
|
||||
corr_ppi2P = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_ppi2.svg" )
|
||||
|
||||
cat("Corr plot ppi2 with coloured dots:", corr_ppi2P)
|
||||
svg(corr_ppi2P, width = 10, height = 10)
|
||||
|
||||
my_corr_pairs(corr_data_all = corr_df_ppi2
|
||||
, corr_cols = colnames(corr_df_ppi2[1:corr_end])
|
||||
, corr_method = "spearman"
|
||||
, colour_categ_col = colnames(corr_df_ppi2[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = 3
|
||||
, corr_value_size = 1)
|
||||
|
||||
dev.off()
|
||||
}
|
||||
|
||||
# FIXME: ADD distance
|
||||
#==================
|
||||
# mCSSM-NA affinity
|
||||
#==================
|
||||
#================
|
||||
# NA affinity
|
||||
#================
|
||||
if (tolower(gene)%in%geneL_na){
|
||||
corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
||||
|
||||
corr_na_colnames = c(static_cols
|
||||
, "mCSM-NA"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
if (all(corr_na_colnames%in%colnames(corr_plotdf))){
|
||||
cat("PASS: all colnames exist for mcsm-NA-correlation")
|
||||
}else{
|
||||
stop("Abort: all colnames DO NOT exist for mcsm-NA-correlation")
|
||||
}
|
||||
|
||||
corr_na_colnames%in%colnames(corr_plotdf)
|
||||
corr_df_na = corr_plotdf[, corr_na_colnames]
|
||||
complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
||||
cat("\nComplete muts for NA affinity for", gene, ":", complete_obs_na)
|
||||
|
||||
color_coln = which(colnames(corr_df_na) == "dst_mode")
|
||||
# end = which(colnames(corr_df_na) == drug)
|
||||
# ncol_omit = 2
|
||||
# corr_end = end-ncol_omit
|
||||
corr_end = color_coln-1
|
||||
|
||||
#------------------------
|
||||
# Output: mCSM-NA corrP
|
||||
#------------------------
|
||||
corr_naP = paste0(outdir_images
|
||||
,tolower(gene)
|
||||
,"_corr_na.svg" )
|
||||
|
||||
cat("Corr plot mCSM-NA with coloured dots:", corr_naP)
|
||||
|
||||
svg(corr_naP, width = 10, height = 10)
|
||||
my_corr_pairs(corr_data_all = corr_df_na
|
||||
, corr_cols = colnames(corr_df_na[1:corr_end])
|
||||
, corr_method = "spearman"
|
||||
, colour_categ_col = colnames(corr_df_na[color_coln]) #"dst_mode"
|
||||
, categ_colour = c("red", "blue")
|
||||
, density_show = F
|
||||
, hist_col = "coral4"
|
||||
, dot_size = 2
|
||||
, ats = 1.5
|
||||
, corr_lab_size = 3
|
||||
, corr_value_size = 1)
|
||||
|
||||
dev.off()
|
||||
}
|
||||
####################################################
|
||||
#===============
|
||||
#ggpairs:
|
||||
#================
|
||||
#corr_df_ps$dst_mode = ifelse(corr_df_cons$dst_mode=="1", "R", "S")
|
||||
corr_plotting_df = corr_df_ps
|
||||
|
||||
|
||||
svg('~/tmp/foo.svg',
|
||||
width=10,
|
||||
height=10,
|
||||
units="in",
|
||||
res=300)
|
||||
my_gg_pairs(corr_plotting_df)
|
||||
dev.off()
|
||||
|
||||
png('~/tmp/foo.png',
|
||||
width=10,
|
||||
height=10,
|
||||
units="in",
|
||||
res=300)
|
||||
my_gg_pairs(corr_plotting_df)
|
||||
dev.off()
|
||||
|
||||
|
||||
#
|
49
scripts/plotting/plotting_thesis/gg_pairs.R
Normal file
49
scripts/plotting/plotting_thesis/gg_pairs.R
Normal file
|
@ -0,0 +1,49 @@
|
|||
# Tweak for layout, fonts, and text sizes.
|
||||
#svg('~/tmp/foo.svg', width=10, height=10, )
|
||||
|
||||
|
||||
# Set the width/height to inches for print. 300 dpi is reasonably ok for "draft"
|
||||
# output. To raise quality while preserving sanity, increase 'res' and
|
||||
# DO NOT alter font/point/line sizes
|
||||
|
||||
|
||||
|
||||
#- [X] Black text for "Corr:" or replace with Rho symbol
|
||||
#- [X] 0/1 == R/S
|
||||
#- [X] "rho" symbol instead of "Corr:" text
|
||||
#- [X] Dot size a bit smaller
|
||||
#- [X] Plot lines slightly thinner
|
||||
#
|
||||
#
|
||||
png('~/tmp/foo.png',
|
||||
width=10,
|
||||
height=10,
|
||||
units="in",
|
||||
res=300)
|
||||
#
|
||||
corr_plotting_df = corr_df_ps
|
||||
|
||||
|
||||
ggpairs(corr_plotting_df, columns = 1:(ncol(corr_plotting_df)-1),
|
||||
upper = list(continuous = wrap('cor',
|
||||
method = "spearman",
|
||||
title="ρ",
|
||||
digits=2,
|
||||
title_args=c(colour="black")
|
||||
)
|
||||
),
|
||||
lower = list(
|
||||
continuous = wrap("points", alpha = 0.7, size=0.5),
|
||||
combo = wrap("dot", alpha = 0.7, size=0.5)
|
||||
),
|
||||
aes(colour = factor(ifelse(corr_plotting_df$dst_mode==0, "S", "R")), alpha = 0.5),
|
||||
title="Stability") +
|
||||
|
||||
scale_colour_manual(values = c("red", "blue")) +
|
||||
scale_fill_manual(values = c("red", "blue")) +
|
||||
theme(
|
||||
text = element_text(size=12, face="bold")
|
||||
)
|
||||
|
||||
dev.off()
|
||||
#Check all plots with LSHTM_analysis/scripts/plotting/plotting_colnames.R
|
144
scripts/plotting/plotting_thesis/gg_pairs_all.R
Normal file
144
scripts/plotting/plotting_thesis/gg_pairs_all.R
Normal file
|
@ -0,0 +1,144 @@
|
|||
source("~/git/LSHTM_analysis/config/embb.R")
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
|
||||
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
|
||||
|
||||
my_gg_pairs=function(plot_df){
|
||||
ggpairs(plot_df,
|
||||
columns = 1:(ncol(plot_df)-1),
|
||||
upper = list(
|
||||
continuous = wrap('cor',
|
||||
method = "spearman",
|
||||
title="ρ",
|
||||
digits=2,
|
||||
justify_labels = "left",
|
||||
title_args=c(colour="black")
|
||||
)
|
||||
),
|
||||
lower = list(
|
||||
continuous = wrap("points",
|
||||
alpha = 0.7,
|
||||
size=0.5),
|
||||
combo = wrap("dot",
|
||||
alpha = 0.7,
|
||||
size=0.5)
|
||||
),
|
||||
aes(colour = factor(ifelse(plot_df$dst_mode==0,
|
||||
"S",
|
||||
"R") ),
|
||||
alpha = 0.5),
|
||||
title="Stability") +
|
||||
|
||||
scale_colour_manual(values = c("red", "blue")) +
|
||||
scale_fill_manual(values = c("red", "blue")) +
|
||||
theme(text = element_text(size=12,
|
||||
face="bold") )
|
||||
}
|
||||
|
||||
DistCutOff = 10
|
||||
|
||||
merged_df3 = as.data.frame(merged_df3)
|
||||
corr_plotdf = corr_data_extract(merged_df3
|
||||
, gene = gene
|
||||
, drug = drug
|
||||
, extract_scaled_cols = F)
|
||||
|
||||
aff_dist_cols = colnames(corr_plotdf)[grep("Dist", colnames(corr_plotdf))]
|
||||
static_cols = c("Log10(MAF)"
|
||||
, "Log10(OR)")
|
||||
|
||||
corr_ps_colnames = c(static_cols
|
||||
, "DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
, aff_dist_cols
|
||||
, "dst_mode")
|
||||
corr_df_ps = corr_plotdf[, corr_ps_colnames]
|
||||
complete_obs_ps = nrow(corr_df_ps) - sum(is.na(corr_df_ps$`Log(OR)`))
|
||||
color_coln = which(colnames(corr_df_ps) == "dst_mode")
|
||||
corr_end = color_coln-1
|
||||
|
||||
# Plot #1
|
||||
plot_corr_df_ps = my_gg_pairs(corr_df_ps)
|
||||
|
||||
|
||||
corr_conservation_cols = c( static_cols
|
||||
, "ConSurf"
|
||||
, "SNAP2"
|
||||
, "PROVEAN"
|
||||
, aff_dist_cols
|
||||
, "dst_mode"
|
||||
)
|
||||
|
||||
corr_df_cons = corr_plotdf[, corr_conservation_cols]
|
||||
complete_obs_cons = nrow(corr_df_cons) - sum(is.na(corr_df_cons$`Log(OR)`))
|
||||
color_coln = which(colnames(corr_df_cons) == "dst_mode")
|
||||
corr_end = color_coln-1
|
||||
|
||||
# Plot #2
|
||||
|
||||
#my_gg_pairs(corr_df_cons)
|
||||
plot_corr_df_cons = my_gg_pairs(corr_df_cons)
|
||||
|
||||
|
||||
corr_df_lig = corr_plotdf[corr_plotdf["Lig-Dist"]<DistCutOff,]
|
||||
corr_lig_colnames = c(static_cols
|
||||
, "mCSM-lig"
|
||||
, "mmCSM-lig"
|
||||
, "dst_mode")
|
||||
|
||||
corr_df_lig = corr_plotdf[, corr_lig_colnames]
|
||||
|
||||
complete_obs_lig = nrow(corr_df_lig) - sum(is.na(corr_df_lig$`Log(OR)`))
|
||||
color_coln = which(colnames(corr_df_lig) == "dst_mode")
|
||||
corr_end = color_coln-1
|
||||
# Plot #3
|
||||
|
||||
#my_gg_pairs(corr_df_lig)
|
||||
plot_corr_df_lig = my_gg_pairs(corr_df_lig)
|
||||
|
||||
corr_df_ppi2 = corr_plotdf[corr_plotdf["PPI-Dist"]<DistCutOff,]
|
||||
corr_ppi2_colnames = c(static_cols
|
||||
, "mCSM-PPI2"
|
||||
, "dst_mode"
|
||||
)
|
||||
corr_df_ppi2 = corr_plotdf[, corr_ppi2_colnames]
|
||||
complete_obs_ppi2 = nrow(corr_df_ppi2) - sum(is.na(corr_df_ppi2$`Log(OR)`))
|
||||
color_coln = which(colnames(corr_df_ppi2) == "dst_mode")
|
||||
corr_end = color_coln-1
|
||||
|
||||
# NOTE: DELETE LOG OR FROM CORRELATION PLOTS!!!!!
|
||||
# NOTE: ALSO MAYBE DELETE DISTANCES AS WELL
|
||||
# NOTE: http://ggobi.github.io/ggally/reference/ggally_cor.html
|
||||
|
||||
# "***" if the p-value is < 0.001
|
||||
# "**" if the p-value is < 0.01
|
||||
# "*" if the p-value is < 0.05
|
||||
# "." if the p-value is < 0.10
|
||||
# "" otherwise
|
||||
#
|
||||
|
||||
# Plot #4
|
||||
#my_gg_pairs(corr_df_ppi2)
|
||||
plot_corr_df_ppi2 = my_gg_pairs(corr_df_ppi2)
|
||||
|
||||
|
||||
# corr_df_na = corr_df_na[corr_df_na["NA-Dist"]<DistCutOff,]
|
||||
# corr_na_colnames = c(static_cols
|
||||
# , "mCSM-NA"
|
||||
# , "dst_mode"
|
||||
# )
|
||||
#
|
||||
# corr_df_na = corr_plotdf[, corr_na_colnames]
|
||||
# complete_obs_na = nrow(corr_df_na) - sum(is.na(corr_df_na$`Log(OR)`))
|
||||
# color_coln = which(colnames(corr_df_na) == "dst_mode")
|
||||
# corr_end = color_coln-1
|
||||
#
|
||||
# # Plot #5
|
||||
# #my_gg_pairs(corr_df_na)
|
||||
# plot_corr_df_na = my_gg_pairs(corr_df_na)
|
||||
|
||||
|
||||
cowplot::plot_grid(ggmatrix_gtable(plot_corr_df_ps),ggmatrix_gtable(plot_corr_df_cons),
|
||||
ggmatrix_gtable(plot_corr_df_lig),ggmatrix_gtable(plot_corr_df_ppi2),
|
||||
nrow=2, ncol=2, rel_heights = 7,7,3,3)
|
Loading…
Add table
Add a link
Reference in a new issue