diff --git a/scripts/plotting/mcsm_affinity_data_only.R b/scripts/plotting/mcsm_affinity_data_only.R new file mode 100644 index 0000000..cb20c00 --- /dev/null +++ b/scripts/plotting/mcsm_affinity_data_only.R @@ -0,0 +1,243 @@ +#source("~/git/LSHTM_analysis/config/pnca.R") +#source("~/git/LSHTM_analysis/config/alr.R") +#source("~/git/LSHTM_analysis/config/gid.R") +#source("~/git/LSHTM_analysis/config/embb.R") +#source("~/git/LSHTM_analysis/config/katg.R") +source("~/git/LSHTM_analysis/config/rpob.R") + +source("/home/tanu/git/LSHTM_analysis/my_header.R") +######################################################### +# TASK: Generate averaged affinity values +# across all affinity tools for a given structure +# as applicable... +######################################################### + +#======= +# output +#======= +outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) + +#OutFile1 +outfile_mean_aff = paste0(outdir_images, "/", tolower(gene) + , "_mean_affinity_all.csv") +print(paste0("Output file:", outfile_mean_aff)) + +#OutFile2 +outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene) + , "_mean_affinity_priority.csv") +print(paste0("Output file:", outfile_mean_aff_priorty)) + +#%%=============================================================== + +#============= +# Input +#============= +df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") +df3 = read.csv(df3_filename) +length(df3$mutationinformation) + +# mut_info checks +table(df3$mutation_info) +table(df3$mutation_info_orig) +table(df3$mutation_info_labels_orig) + +# used in plots and analyses +table(df3$mutation_info_labels) # different, and matches dst_mode +table(df3$dst_mode) + +# create column based on dst mode with different colname +table(is.na(df3$dst)) +table(is.na(df3$dst_mode)) + +#=============== +# Create column: sensitivity mapped to dst_mode +#=============== +df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S") +table(df3$sensitivity) + +length(unique((df3$mutationinformation))) +all_colnames = as.data.frame(colnames(df3)) +common_cols = c("mutationinformation" + , "X5uhc_position" + , "X5uhc_offset" + , "position" + , "dst_mode" + , "mutation_info_labels" + , "sensitivity" + , "ligand_distance" + , "interface_dist") + +all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] +all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] + +#=================== +# stability cols +#=================== +# raw_cols_stability = c("duet_stability_change" +# , "deepddg" +# , "ddg_dynamut2" +# , "ddg_foldx") +# +# scaled_cols_stability = c("duet_scaled" +# , "deepddg_scaled" +# , "ddg_dynamut2_scaled" +# , "foldx_scaled") +# +# outcome_cols_stability = c("duet_outcome" +# , "deepddg_outcome" +# , "ddg_dynamut2_outcome" +# , "foldx_outcome") + +#=================== +# affinity cols +#=================== +raw_cols_affinity = c("ligand_affinity_change" + , "mmcsm_lig" + , "mcsm_ppi2_affinity" + , "mcsm_na_affinity") + +scaled_cols_affinity = c("affinity_scaled" + , "mmcsm_lig_scaled" + , "mcsm_ppi2_scaled" + , "mcsm_na_scaled" ) + +outcome_cols_affinity = c( "ligand_outcome" + , "mmcsm_lig_outcome" + , "mcsm_ppi2_outcome" + , "mcsm_na_outcome") + +#=================== +# conservation cols +#=================== +# raw_cols_conservation = c("consurf_score" +# , "snap2_score" +# , "provean_score") +# +# scaled_cols_conservation = c("consurf_scaled" +# , "snap2_scaled" +# , "provean_scaled") +# +# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether +# outcome_cols_conservation = c("provean_outcome" +# , "snap2_outcome" +# #consurf outcome doesn't exist +# ) + +###################################################################### +cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols + , raw_cols_affinity + , scaled_cols_affinity + , outcome_cols_affinity + # , raw_cols_stability + # , scaled_cols_stability + # , outcome_cols_stability + )] + +cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols + , raw_cols_affinity + , scaled_cols_affinity)] + +df3_plot = df3[, cols_to_extract] + +DistCutOff_colnames = c("ligand_distance", "interface_dist") +DistCutOff = 10 + +df3_affinity_filtered = df3_plot[ (df3_plot$ligand_distance<10 | df3_plot$interface_dist <10),] +c0u = unique(df3_affinity_filtered$position) +length(c0u) + +foo = df3_affinity_filtered[df3_affinity_filtered$ligand_distance<10,] +bar = df3_affinity_filtered[df3_affinity_filtered$interface_dist<10,] + +wilcox.test(foo$mmcsm_lig_scaled~foo$sensitivity) +wilcox.test(foo$mmcsm_lig~foo$sensitivity) + +wilcox.test(foo$affinity_scaled~foo$sensitivity) +wilcox.test(foo$ligand_affinity_change~foo$sensitivity) + +wilcox.test(bar$mcsm_na_scaled~bar$sensitivity) +wilcox.test(bar$mcsm_na_affinity~bar$sensitivity) + +wilcox.test(bar$mcsm_ppi2_scaled~bar$sensitivity) +wilcox.test(bar$mcsm_ppi2_affinity~bar$sensitivity) + +############################################################## +df = df3_affinity_filtered +sum(is.na(df)) +df2 = na.omit(df) # Apply na.omit function + +a = df2[df2$position==37,] +sel_cols = c("mutationinformation", "position", scaled_cols_affinity) +a = a[, sel_cols] + +############################################################## +# FIXME: ADD distance to NA when SP replies + +##################### +# Ensemble affinity: affinity_cols +# mcsm_lig, mmcsm_lig and mcsm_na +##################### +# extract outcome cols and map numeric values to the categories +# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising +######################################### +#===================================== +# Affintiy (2 cols): average the scores +# across predictors ==> average by +# position ==> scale b/w -1 and 1 + +# column to average: ens_affinity +#===================================== +cols_mcsm_lig = c("mutationinformation" + , "position" + , "sensitivity" + , "X5uhc_position" + , "X5uhc_offset" + , "ligand_distance" + , "ligand_outcome" + , "mmcsm_lig_outcome") + + + + + + + + + +###################################################################### +################## +# merge: mean ensemble stability and affinity by_position +#################### +# if ( class(mean_ens_stability_by_position) && class(mean_ens_affinity_by_position) != "data.frame"){ +# cat("Y") +# } + +common_cols = intersect(colnames(mean_ens_stability_by_position), colnames(mean_ens_affinity_by_position)) + +if (dim(mean_ens_stability_by_position) && dim(mean_ens_affinity_by_position)){ + print(paste0("PASS: dim's match, mering dfs by column :", common_cols)) + #combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position )) + combined_df = as.data.frame(merge(mean_ens_stability_by_position + , mean_ens_affinity_by_position + , by = common_cols + , all = T)) + + cat(paste0("\nnrows combined_df:", nrow(combined_df) + , "\nnrows combined_df:", ncol(combined_df))) +}else{ + cat(paste0("FAIL: dim's mismatch, aborting cbind!" + , "\nnrows df1:", nrow(mean_duet_by_position) + , "\nnrows df2:", nrow(mean_affinity_by_position))) + quit() +} +#%%============================================================ +# output +write.csv(combined_df, outfile_mean_ens_st_aff + , row.names = F) +cat("Finished writing file:\n" + , outfile_mean_ens_st_aff + , "\nNo. of rows:", nrow(combined_df) + , "\nNo. of cols:", ncol(combined_df)) + +# end of script +#=============================================================== diff --git a/scripts/plotting/mcsm_mean_stability_ensemble_5uhc_rpob.R b/scripts/plotting/mcsm_mean_stability_ensemble_5uhc_rpob.R new file mode 100644 index 0000000..c75a6ba --- /dev/null +++ b/scripts/plotting/mcsm_mean_stability_ensemble_5uhc_rpob.R @@ -0,0 +1,176 @@ +#source("~/git/LSHTM_analysis/config/pnca.R") +#source("~/git/LSHTM_analysis/config/alr.R") +#source("~/git/LSHTM_analysis/config/gid.R") +#source("~/git/LSHTM_analysis/config/embb.R") +#source("~/git/LSHTM_analysis/config/katg.R") +#source("~/git/LSHTM_analysis/config/rpob.R") + +source("/home/tanu/git/LSHTM_analysis/my_header.R") +######################################################### +# TASK: Generate averaged stability values +# across all stability tools +# for a given structure +######################################################### + +#======= +# output +#======= +outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene)) +outfile_mean_ens_st_aff = paste0(outdir_images, "/5uhc_", tolower(gene) + , "_mean_ens_stability.csv") +print(paste0("Output file:", outfile_mean_ens_st_aff)) + +#%%=============================================================== + +#============= +# Input +#============= +df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") +df3 = read.csv(df3_filename) +length(df3$mutationinformation) + +# mut_info checks +table(df3$mutation_info) +table(df3$mutation_info_orig) +table(df3$mutation_info_labels_orig) + +# used in plots and analyses +table(df3$mutation_info_labels) # different, and matches dst_mode +table(df3$dst_mode) + +# create column based on dst mode with different colname +table(is.na(df3$dst)) +table(is.na(df3$dst_mode)) + +#=============== +# Create column: sensitivity mapped to dst_mode +#=============== +df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S") +table(df3$sensitivity) + +length(unique((df3$mutationinformation))) +all_colnames = as.data.frame(colnames(df3)) +common_cols = c("mutationinformation" + , "X5uhc_position" + , "dst_mode" + , "mutation_info_labels" + , "sensitivity" + , "X5uhc_position" + , "X5uhc_offset" + , "ligand_distance" + , "interface_dist") + +all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)] +all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)] + +#=================== +# stability cols +#=================== +raw_cols_stability = c("duet_stability_change" + , "deepddg" + , "ddg_dynamut2" + , "ddg_foldx") + +scaled_cols_stability = c("duet_scaled" + , "deepddg_scaled" + , "ddg_dynamut2_scaled" + , "foldx_scaled") + +outcome_cols_stability = c("duet_outcome" + , "deepddg_outcome" + , "ddg_dynamut2_outcome" + , "foldx_outcome") + +########################################################### +cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols + , raw_cols_stability + , scaled_cols_stability + , outcome_cols_stability)] + +cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols + , outcome_cols_stability)] +############################################################## +##################### +# Ensemble stability: outcome_cols_stability +##################### +# extract outcome cols and map numeric values to the categories +# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising +df3_plot = df3[, cols_to_extract] + +# assign numeric values to outcome +df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability] + , function(x){ifelse(x == "Destabilising", 0, 1)}) +table(df3$duet_outcome) +table(df3_plot$duet_outcome) +#===================================== +# Stability (4 cols): average the scores +# across predictors ==> average by +# X5uhc_position ==> scale b/w -1 and 1 + +# column to average: ens_stability +#===================================== +cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability) + +# ensemble average across predictors +df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average]) + +head(df3_plot$X5uhc_position); head(df3_plot$mutationinformation) +head(df3_plot$ens_stability) +table(df3_plot$ens_stability) + +# ensemble average of predictors by X5uhc_position +mean_ens_stability_by_position <- df3_plot %>% + dplyr::group_by(X5uhc_position) %>% + dplyr::summarize(avg_ens_stability = mean(ens_stability)) + +# REscale b/w -1 and 1 +#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability']) +#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability']) + +# scale the average stability value between -1 and 1 +# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3'] +# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max)) + +mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability'] + , function(x) { + scales::rescale(x, to = c(-1,1) + #, from = c(en_stab_min,en_stab_max)) + , from = c(0,1)) + }) +cat(paste0('Average stability scores:\n' + , head(mean_ens_stability_by_position['avg_ens_stability']) + , '\n---------------------------------------------------------------' + , '\nAverage stability scaled scores:\n' + , head(mean_ens_stability_by_position['avg_ens_stability_scaled']))) + +# convert to a data frame +mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position) + +#FIXME: sanity checks +# TODO: predetermine the bounds +# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled']) +# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled']) +# +# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){ +# cat(paste0("PASS: ensemble stability scores averaged by X5uhc_position and then scaled" +# , "\nmin ensemble averaged stability: ", l_bound_ens +# , "\nmax ensemble averaged stability: ", u_bound_ens)) +# }else{ +# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1" +# , "\nmin ensemble averaged stability: ", l_bound_ens +# , "\nmax ensemble averaged stability: ", u_bound_ens)) +# quit() +# } +################################################################## +# output +#write.csv(combined_df, outfile_mean_ens_st_aff +write.csv(mean_ens_stability_by_position + , outfile_mean_ens_st_aff + , row.names = F) +cat("Finished writing file:\n" + , outfile_mean_ens_st_aff + , "\nNo. of rows:", nrow(mean_ens_stability_by_position) + , "\nNo. of cols:", ncol(mean_ens_stability_by_position)) + +# end of script +#=============================================================== diff --git a/scripts/plotting/replaceBfactor_pdb_stability_5uhc_rpob.R b/scripts/plotting/replaceBfactor_pdb_stability_5uhc_rpob.R new file mode 100644 index 0000000..25cb705 --- /dev/null +++ b/scripts/plotting/replaceBfactor_pdb_stability_5uhc_rpob.R @@ -0,0 +1,283 @@ +#!/usr/bin/env Rscript + +######################################################### +# TASK: Replace B-factors in the pdb file with the mean +# normalised stability values. + +# read pdb file + +# read mcsm mean stability value files +# extract the respective mean values and assign to the +# b-factor column within their respective pdbs + +# generate some distribution plots for inspection + +######################################################### +# working dir and loading libraries +getwd() +setwd("~/git/LSHTM_analysis/scripts/plotting") +cat(c(getwd(),"\n")) + +#source("~/git/LSHTM_analysis/scripts/Header_TT.R") +library(bio3d) +require("getopt", quietly = TRUE) # cmd parse arguments +#======================================================== +#drug = "pyrazinamide" +#gene = "pncA" + +# command line args +spec = matrix(c( + "drug" , "d", 1, "character", + "gene" , "g", 1, "character" +), byrow = TRUE, ncol = 4) + +opt = getopt(spec) + +drug = opt$drug +gene = opt$gene + +if(is.null(drug)|is.null(gene)) { + stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)") +} +#======================================================== +gene_match = paste0(gene,"_p.") +cat(gene_match) + +#============= +# directories +#============= +datadir = paste0("~/git/Data") +indir = paste0(datadir, "/", drug, "/input") +outdir = paste0("~/git/Data", "/", drug, "/output") +#outdir_plots = paste0("~/git/Data", "/", drug, "/output/plots") +outdir_plots = paste0("~/git/Writing/thesis/images/results/5uhc_rpob_", tolower(gene)) + +#====== +# input +#====== +#in_filename_pdb = paste0(tolower(gene), "_complex.pdb") +in_filename_pdb = "5uhc.pdb" + +infile_pdb = paste0(indir, "/", in_filename_pdb) +cat(paste0("Input file:", infile_pdb) ) + +#in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv") +#infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability) + +in_filename_mean_stability = paste0(tolower(gene), "_mean_ens_stability.csv") +infile_mean_stability = paste0(outdir_plots, "/", in_filename_mean_stability) + +cat(paste0("Input file:", infile_mean_stability) ) + +#======= +# output +#======= +#out_filename_duet_mspdb = paste0(tolower(gene), "_complex_bduet_ms.pdb") +out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_stab_ms.pdb") +outfile_duet_mspdb = paste0(outdir_plots, "/", out_filename_duet_mspdb) +print(paste0("Output file:", outfile_duet_mspdb)) + +#%%=============================================================== +#NOTE: duet here refers to the ensemble stability values + +########################### +# Read file: average stability values +# or mcsm_normalised file +########################### +my_df <- read.csv(infile_mean_stability, header = T) +str(my_df) + +############# +# Read pdb +############# +# list of 8 +my_pdb = read.pdb(infile_pdb + , maxlines = -1 + , multi = FALSE + , rm.insert = FALSE + , rm.alt = TRUE + , ATOM.only = FALSE + , hex = FALSE + , verbose = TRUE) + +rm(in_filename_mean_stability, in_filename_pdb) + +# assign separately for duet and ligand +my_pdb_duet = my_pdb + +#========================================================= +# Replacing B factor with mean stability scores +# within the respective dfs +#========================================================== +# extract atom list into a variable +# since in the list this corresponds to data frame, variable will be a df +#df_duet = my_pdb_duet[[1]] +df_duet= my_pdb_duet[['atom']] + +# make a copy: required for downstream sanity checks +d2_duet = df_duet + +# sanity checks: B factor +max(df_duet$b); min(df_duet$b) + +#================================================== +# histograms and density plots for inspection +# 1: original B-factors +# 2: original mean stability values +# 3: replaced B-factors with mean stability values +#================================================== +# Set the margin on all sides +par(oma = c(3,2,3,0) + , mar = c(1,3,5,2) + #, mfrow = c(3,2) + #, mfrow = c(3,4)) + , mfrow = c(3,2)) + + +#============= +# Row 1 plots: original B-factors +# duet and affinity +#============= +hist(df_duet$b + , xlab = "" + , main = "Bfactor stability") + +plot(density(df_duet$b) + , xlab = "" + , main = "Bfactor stability") + +#============= +# Row 2 plots: original mean stability values +# duet and affinity +#============= + +#hist(my_df$averaged_duet +hist(my_df$avg_ens_stability_scaled + , xlab = "" + , main = "mean stability values") + +#plot(density(my_df$averaged_duet) +plot(density(my_df$avg_ens_stability_scaled) + , xlab = "" + , main = "mean stability values") + +#============== +# Row 3 plots: replaced B-factors with mean stability values +# After actual replacement in the b factor column +#=============== +################################################################ +#========= +# step 0_P1: DONT RUN once you have double checked the matched output +#========= +# sanity check: match and assign to a separate column to double check +# colnames(my_df) +# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)] + +#========= +# step 1_P1 +#========= +# Be brave and replace in place now (don"t run sanity check) +# this makes all the B-factor values in the non-matched positions as NA + +#df_duet$b = my_df$averaged_duet_scaled[match(df_duet$resno, my_df$position)] +df_duet$b = my_df$avg_ens_stability_scaled[match(df_duet$resno, my_df$position)] + +#========= +# step 2_P1 +#========= +# count NA in Bfactor +b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet + +# count number of 0"s in Bactor +sum(df_duet$b == 0) + +# replace all NA in b factor with 0 +na_rep = 2 +df_duet$b[is.na(df_duet$b)] = na_rep + +# # sanity check: should be 0 and True +# # duet and lig +# if ( (sum(df_duet$b == na_rep) == b_na_duet) && (sum(df_lig$b == na_rep) == b_na_lig) ) { +# print ("PASS: NA's replaced with 0s successfully in df_duet and df_lig") +# } else { +# print("FAIL: NA replacement in df_duet NOT successful") +# quit() +# } +# +# max(df_duet$b); min(df_duet$b) +# +# # sanity checks: should be True +# if( (max(df_duet$b) == max(my_df$avg_ens_stability_scaled)) & (min(df_duet$b) == min(my_df$avg_ens_stability_scaled)) ){ +# print("PASS: B-factors replaced correctly in df_duet") +# } else { +# print ("FAIL: To replace B-factors in df_duet") +# quit() +# } + +# if( (max(df_lig$b) == max(my_df$avg_ens_affinity_scaled)) & (min(df_lig$b) == min(my_df$avg_ens_affinity_scaled)) ){ +# print("PASS: B-factors replaced correctly in df_lig") +# } else { +# print ("FAIL: To replace B-factors in df_lig") +# quit() +# } + +#========= +# step 3_P1 +#========= +# sanity check: dim should be same before reassignment +if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & + (dim(df_duet)[2] == dim(d2_duet)[2]) + ){ + print("PASS: Dims of both dfs as expected") +} else { + print ("FAIL: Dims mismatch") + quit()} + +#========= +# step 4_P1: +# VERY important +#========= +# assign it back to the pdb file +my_pdb_duet[['atom']] = df_duet +max(df_duet$b); min(df_duet$b) +table(df_duet$b) +sum(is.na(df_duet$b)) + +#========= +# step 5_P1 +#========= +cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb)) +write.pdb(my_pdb_duet, outfile_duet_mspdb) + +#============================ +# Add the 3rd histogram and density plots for comparisons +#============================ +# Plots continued... +# Row 3 plots: hist and density of replaced B-factors with stability values +hist(df_duet$b + , xlab = "" + , main = "repalcedB duet") + +plot(density(df_duet$b) + , xlab = "" + , main = "replacedB duet") + +# graph titles +mtext(text = "Frequency" + , side = 2 + , line = 0 + , outer = TRUE) + +mtext(text = paste0(tolower(gene), ": stability distribution") + , side = 3 + , line = 0 + , outer = TRUE) +#============================================ + +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +# NOTE: This replaced B-factor distribution has the same +# x-axis as the PredAff normalised values, but the distribution +# is affected since 0 is overinflated/or hs an additional blip because +# of the positions not associated with resistance. This is because all the positions +# where there are no SNPs have been assigned 0??? +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \ No newline at end of file