work from thinkpad

This commit is contained in:
Tanushree Tunstall 2021-02-09 16:03:02 +00:00
parent 4d03a43c4a
commit 660ab31ce8
2 changed files with 86 additions and 65 deletions

View file

@ -81,8 +81,8 @@ indir = args.input_dir
outdir = args.output_dir
make_dirs = args.make_dirs
#drug = 'ethambutol'
#gene = 'embB'
#drug = 'streptomycin'
#gene = 'gid'
#%% input and output dirs and files
#=======
@ -122,15 +122,15 @@ if make_dirs:
# handle missing dirs here
if not os.path.isdir(datadir):
print('ERROR: Data directory does not exist:', datadir
, '\nPlease create and ensure gwas data is present and then rerun\nelse specify cmd option ---make_dirs')
, '\nPlease create and ensure gwas data is present and then rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(indir):
print('ERROR: Input directory does not exist:', indir
, '\nPlease either create or specify indir and rerun\nelse specify cmd option ---make_dirs')
, '\nPlease either create or specify indir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(outdir):
print('ERROR: Output directory does not exist:', outdir
, '\nPlease create or specify outdir and rerun\nelse specify cmd option ---make_dirs')
, '\nPlease create or specify outdir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
# Requires
@ -317,7 +317,7 @@ for i, id in enumerate(clean_df.id):
print('RESULTS:')
print('Total WT in dr_muts_col:', wt)
print('Total matches of', gene, 'SNP matches in', dr_muts_col, ':', dr_gene_count)
print('Total samples with > 1', gene, 'muts in dr_muts_col:', len(id2_dr) )
print('Total samples with > 1', gene, 'nsSNPs in dr_muts_col:', len(id2_dr) )
print('=================================================================')
del(clean_df, na_count, i, id, wt, id2_dr, count_gene_dr, count_wt)
@ -361,7 +361,7 @@ for i, id in enumerate(clean_df.id):
print('RESULTS:')
print('Total WT in other_muts_col:', wt_other)
print('Total matches of', gene, 'SNP matches in', other_muts_col, ':', other_gene_count)
print('Total samples with > 1', gene, 'muts in other_muts_col:', len(id2_other) )
print('Total samples with > 1', gene, 'nsSNPs in other_muts_col:', len(id2_other) )
print('=================================================================')
print('Predicting total no. of rows in the curated df:', dr_gene_count + other_gene_count
@ -851,7 +851,7 @@ else:
, '\nMuts are unique to dr_ and other_ mutation class'
, '\n=========================================================')
# inspect dr_muts and other muts
# inspect dr_muts and other muts: Fixed in case no ambiguous muts detected!
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('Finding ambiguous muts...'
, '\n========================================================='
@ -861,24 +861,37 @@ if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
, '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum()
, '\nThese are:\n', other_muts[other_muts.isin(dr_muts)]
, '\n=========================================================')
else:
sys.exit('Error: ambiguous muts present, but extraction failed. Debug!')
print('Counting no. of ambiguous muts...')
if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique():
common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist()
print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts))
, '\nlist of ambiguous mutations (see below):', *common_muts, sep = '\n')
print('\n===========================================================')
else:
print('Error: ambiguous muts detected, but extraction failed. Debug!'
print('Counting no. of ambiguous muts...'
, '\nNo. of ambiguous muts in dr:'
, len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist())
, '\nNo. of ambiguous muts in other:'
, len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())
, '\n=========================================================')
if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique():
common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist()
print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts))
, '\nlist of ambiguous mutations (see below):', *common_muts, sep = '\n')
print('\n===========================================================')
else:
#sys.exit('Error: ambiguous muts present, but extraction failed. Debug!')
print('No: ambiguous muts present')
#print('Counting no. of ambiguous muts...')
#if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique():
# common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist()
# print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts))
# , '\nlist of ambiguous mutations (see below):', *common_muts, sep = '\n')
# print('\n===========================================================')
#else:
# print('Error: ambiguous muts detected, but extraction failed. Debug!'
# , '\nNo. of ambiguous muts in dr:'
# , len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist())
# , '\nNo. of ambiguous muts in other:'
# , len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())
# , '\n=========================================================')
#%% clear variables
del(id_dr, id_other
#, meta_data
@ -893,25 +906,24 @@ del(c1, c2, col_to_split1, col_to_split2, comp_gene_samples, dr_WF0, dr_df, dr_m
#print(outdir)
#dr_muts.to_csv('dr_muts.csv', header = True)
#other_muts.to_csv('other_muts.csv', header = True)
out_filename_ambig_muts = gene.lower() + '_ambiguous_muts.csv'
outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('\n----------------------------------'
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
out_filename_ambig_muts = gene.lower() + '_ambiguous_muts.csv'
outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('\n----------------------------------'
, '\nWriting file: ambiguous muts'
, '\n----------------------------------'
, '\nFilename:', outfile_ambig_muts)
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile_ambig_muts, index = False)
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile_ambig_muts, index = False)
print('Finished writing:', out_filename_ambig_muts
print('Finished writing:', out_filename_ambig_muts
, '\nNo. of rows:', len(inspect)
, '\nNo. of cols:', len(inspect.columns)
, '\nNo. of rows = no. of samples with the ambiguous muts present:'
, dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()
, '\n=============================================================')
del(out_filename_ambig_muts)
del(out_filename_ambig_muts)
#%% end of data extraction and some files writing. Below are some more files writing.
#=============================================================================
#%% Formatting df: read aa dict and pull relevant info
@ -1181,7 +1193,7 @@ if snps_only.mutationinformation.isna().sum() == 0:
else:
sys.exit('FAIL: SNP has NA, Possible mapping issues from dict?')
out_filename_mcsmsnps = gene.lower() + '_mcsm_snps.csv'
out_filename_mcsmsnps = gene.lower() + '_mcsm_style_snps.csv'
outfile_mcsmsnps = outdir + '/' + out_filename_mcsmsnps
print('\n----------------------------------'
@ -1215,7 +1227,7 @@ metadata_pos.sort_values(by = ['meta_pos_count'], ascending = False, inplace = T
out_filename_metadata_poscounts = gene.lower() + '_metadata_poscounts.csv'
outfile_metadata_poscounts = outdir + '/' + out_filename_metadata_poscounts
print('\n----------------------------------'
, 'Writing file: Metadata poscounts'
, '\nWriting file: Metadata poscounts'
, '\n----------------------------------'
, '\nFile:', outfile_metadata_poscounts
, '\n============================================================')
@ -1309,7 +1321,7 @@ out_filename_pos = gene.lower() + '_mutational_positons.csv'
outfile_pos = outdir + '/' + out_filename_pos
print('\n----------------------------------'
, 'Writing file: mutational positions'
, '\nWriting file: mutational positions'
, '\n----------------------------------'
, '\nFile:', outfile_pos
, '\nNo. of distinct positions:', len(pos_only_sorted)
@ -1349,15 +1361,14 @@ print('============================================'
, '\nTotal no. of samples with missense muts:', len(gene_LF1)
, '\nTotal no. of unique samples with missense muts:', gene_LF1['id'].nunique()
, '\n'
, '\nTotal no.of samples with common_ids:', nu_common_ids['id']
, '\nTotal no.of samples with ambiguous muts:', len(inspect)
, '\nTotal no.of samples with common_ids:', nu_common_ids['id'])
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('\nTotal no.of samples with ambiguous muts:', len(inspect)
#, '\nTotal no.of unique ambiguous muts:', len(common_muts)
, '\nTotal no.of unique ambiguous muts:', inspect['mutation'].nunique()
, '\n============================================================='
, '\n\n\n')
#=======================================================================
print(u'\u2698' * 50,
'\nEnd of script: Data extraction and writing files'

View file

@ -1,32 +1,42 @@
#========
# data extraction: Must be run first to extract mutations for each drug-gene combination
#========
./data_extraction.py -d pyrazinamide -g pncA
./data_extraction.py -d <drug> -g <gene> --make_dirs
#========
# add chains to a PDB file: for modeller models lack chain ID, this script is used
#========
add_chains_pdb.py <N> MY_PDB.pdb
#========
# pdb data extraction: To find out discontinuity of chain and removing invalid muts to allow foldx and mcsm to run properly!
#========
In progress...
#========
# foldx: specify chain if default is NOT 'A'
#========
./runFoldx.py -d pyrazinamide -g pncA
./runFoldx.py -d <drug> -g <gene> -c1 A -p /media/tanu/eb1d072a-3f73-427f-aeb8-f6852b5c5216/Data/processing
#========
# mcsm: specify chain if default is NOT 'A'
#========
./run_mcsm.py -d pyrazinamide -g pncA -s submit -l PZA --debug
./run_mcsm.py -d pyrazinamide -g pncA -s get
./run_mcsm.py -d pyrazinamide -g pncA -s format
./run_mcsm.py -d <drug> -g <gene> -s submit -l PZA --debug
./run_mcsm.py -d <drug> -g <gene> pncA -s get
./run_mcsm.py -d <drug> -g <gene> pncA -s format
#====================
# other struct params
#====================
./dssp_df.py -d pyrazinamide -g pncA
./dssp_df.py -d <drug> -g <gene>
# Errors on matplot.lib warn=, so just comment it out for the timebeing!: MONKEY PATCH
./kd_df.py -d pyrazinamide -g pncA -fasta # fixme: NO of cols says 2, but is actually 3
./rd_df.py -d pyrazinamide -g pncA # fixme: input tsv file is sourced manually from website!
./kd_df.py -d <drug> -g <gene> -fasta # fixme: NO of cols says 2, but is actually 3
./rd_df.py -d <drug> -g <gene> # fixme: input tsv file is sourced manually from website!
#==============================
# af_or calcs: different types
#==============================
./af_or_calcs.R --d pyrazinamide --gene pncA # fixme: No conditional dir structure
./af_or_calcs.R -d <drug> -g <gene># fixme: No conditional dir structure
#==============================
# af_or calcs: kinship
@ -40,18 +50,18 @@ USE THE BELOW from within the or_kinship_link.py script or something?! as part o
# for now use the file already created using some manual wrestling to link
# the OR for kinship with mutations
./or_kinship_link.py -d pyrazinamide -g pncA -sc 2288681 -ec 2289241
./or_kinship_link.py -d <drug> -g <gene> -sc <start_coord> -ec <end_coord>
#==============================
# formatting: ns<gene>_snp_info.txt
#==============================
# This adds mcsm style muts
./snpinfo_format.py -d pyrazinamide -g pncA
./snpinfo_format.py -d <drug> -g <gene>
#==============================
# combining dfs: combining_dfs.py
#==============================
# FIXME: combining_FIXME.py
./combining_dfs.py -d pyrazinamide -g pncA
./combining_dfs.py --d <drug> -g <gene>