added MultClfs_fi to add FI scores for models, in development
This commit is contained in:
parent
53c229f480
commit
652cf4802e
1 changed files with 323 additions and 0 deletions
323
scripts/ml/ml_functions/MultClfs_fi.py
Normal file
323
scripts/ml/ml_functions/MultClfs_fi.py
Normal file
|
@ -0,0 +1,323 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Fri Mar 4 15:25:33 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
#%%
|
||||||
|
import os, sys
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import pprint as pp
|
||||||
|
from copy import deepcopy
|
||||||
|
from sklearn import linear_model
|
||||||
|
from sklearn import datasets
|
||||||
|
from collections import Counter
|
||||||
|
|
||||||
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||||
|
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||||
|
|
||||||
|
from sklearn.naive_bayes import BernoulliNB
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||||
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||||
|
from sklearn.naive_bayes import GaussianNB
|
||||||
|
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||||
|
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||||
|
|
||||||
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||||
|
from sklearn.neural_network import MLPClassifier
|
||||||
|
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
from xgboost import XGBClassifier
|
||||||
|
from sklearn.naive_bayes import MultinomialNB
|
||||||
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||||
|
|
||||||
|
from sklearn.compose import ColumnTransformer
|
||||||
|
from sklearn.compose import make_column_transformer
|
||||||
|
|
||||||
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||||
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||||
|
|
||||||
|
# added
|
||||||
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
||||||
|
|
||||||
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||||
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||||
|
|
||||||
|
from sklearn.pipeline import Pipeline, make_pipeline
|
||||||
|
|
||||||
|
from sklearn.feature_selection import RFE, RFECV
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
import seaborn as sns
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from statistics import mean, stdev, median, mode
|
||||||
|
|
||||||
|
from imblearn.over_sampling import RandomOverSampler
|
||||||
|
from imblearn.under_sampling import RandomUnderSampler
|
||||||
|
from imblearn.over_sampling import SMOTE
|
||||||
|
from sklearn.datasets import make_classification
|
||||||
|
from imblearn.combine import SMOTEENN
|
||||||
|
from imblearn.combine import SMOTETomek
|
||||||
|
|
||||||
|
from imblearn.over_sampling import SMOTENC
|
||||||
|
from imblearn.under_sampling import EditedNearestNeighbours
|
||||||
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||||
|
|
||||||
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
from sklearn.base import BaseEstimator
|
||||||
|
from sklearn.impute import KNNImputer as KNN
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
#%% GLOBALS
|
||||||
|
rs = {'random_state': 42}
|
||||||
|
njobs = {'n_jobs': os.cpu_count() } # the number of jobs should equal the number of CPU cores
|
||||||
|
|
||||||
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||||
|
, 'fscore' : make_scorer(f1_score)
|
||||||
|
, 'precision' : make_scorer(precision_score)
|
||||||
|
, 'recall' : make_scorer(recall_score)
|
||||||
|
, 'accuracy' : make_scorer(accuracy_score)
|
||||||
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||||
|
, 'jcc' : make_scorer(jaccard_score)
|
||||||
|
})
|
||||||
|
|
||||||
|
skf_cv = StratifiedKFold(n_splits = 10
|
||||||
|
#, shuffle = False, random_state= None)
|
||||||
|
, shuffle = True,**rs)
|
||||||
|
|
||||||
|
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||||
|
, n_repeats = 3
|
||||||
|
, **rs)
|
||||||
|
|
||||||
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||||
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||||
|
###############################################################################
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||||
|
sys.path
|
||||||
|
###############################################################################
|
||||||
|
outdir = homedir
|
||||||
|
|
||||||
|
from GetMLData import *
|
||||||
|
from SplitTTS import *
|
||||||
|
|
||||||
|
|
||||||
|
def remove(string):
|
||||||
|
return(string.replace(" ", ""))
|
||||||
|
#%%############################################################################
|
||||||
|
############################
|
||||||
|
# MultModelsCl()
|
||||||
|
# Run Multiple Classifiers
|
||||||
|
############################
|
||||||
|
# Multiple Classification - Model Pipeline
|
||||||
|
def XGBClf(input_df, target, sel_cv
|
||||||
|
, blind_test_df
|
||||||
|
, blind_test_target
|
||||||
|
, tts_split_type
|
||||||
|
|
||||||
|
, resampling_type = 'none' # default
|
||||||
|
#, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||||
|
#, add_yn = True # adds target var class numbers
|
||||||
|
, var_type = ['numerical', 'categorical','mixed']
|
||||||
|
, run_blind_test = True
|
||||||
|
#, return_formatted_output = True
|
||||||
|
):
|
||||||
|
|
||||||
|
'''
|
||||||
|
@ param input_df: input features
|
||||||
|
@ type: df with input features WITHOUT the target variable
|
||||||
|
|
||||||
|
@param target: target (or output) feature
|
||||||
|
@type: df or np.array or Series
|
||||||
|
|
||||||
|
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
|
||||||
|
@type: int or StratifiedKfold()
|
||||||
|
|
||||||
|
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-ho t encoder)
|
||||||
|
@type: list
|
||||||
|
|
||||||
|
returns
|
||||||
|
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||||
|
'''
|
||||||
|
|
||||||
|
#======================================================
|
||||||
|
# Determine categorical and numerical features
|
||||||
|
#======================================================
|
||||||
|
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||||
|
numerical_ix
|
||||||
|
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||||
|
categorical_ix
|
||||||
|
|
||||||
|
#======================================================
|
||||||
|
# Determine preprocessing steps ~ var_type
|
||||||
|
#======================================================
|
||||||
|
if var_type == 'numerical':
|
||||||
|
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||||
|
|
||||||
|
if var_type == 'categorical':
|
||||||
|
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||||
|
|
||||||
|
if var_type == 'mixed':
|
||||||
|
t = [('num', MinMaxScaler(), numerical_ix)
|
||||||
|
, ('cat', OneHotEncoder(), categorical_ix) ]
|
||||||
|
|
||||||
|
col_transform = ColumnTransformer(transformers = t
|
||||||
|
, remainder='passthrough')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#======================================================
|
||||||
|
# Specify multiple Classification Models
|
||||||
|
#======================================================
|
||||||
|
models = [ ('XGBoost' , XGBClassifier(**rs, verbosity = 3, use_label_encoder = False, **njobs) )
|
||||||
|
, ( 'Random Forest', RandomForestClassifier(**rs, **njobs, n_estimators = 1000))
|
||||||
|
, ('Logistic Regression', LogisticRegression(**rs))]
|
||||||
|
|
||||||
|
mm_skf_scoresD = {}
|
||||||
|
|
||||||
|
print('\n==============================================================\n'
|
||||||
|
, '\nRunning several classification models (n):', len(models)
|
||||||
|
,'\nList of models:')
|
||||||
|
for m in models:
|
||||||
|
print(m)
|
||||||
|
print('\n================================================================\n')
|
||||||
|
|
||||||
|
index = 1
|
||||||
|
for model_name, model_fn in models:
|
||||||
|
print('\nRunning classifier:', index
|
||||||
|
, '\nModel_name:' , model_name
|
||||||
|
, '\nModel func:' , model_fn)
|
||||||
|
index = index+1
|
||||||
|
|
||||||
|
model_pipeline = Pipeline([
|
||||||
|
('prep' , col_transform)
|
||||||
|
, ('model' , model_fn)])
|
||||||
|
|
||||||
|
print('\nRunning model pipeline:', model_pipeline)
|
||||||
|
skf_cv_modD = cross_validate(model_pipeline
|
||||||
|
, input_df
|
||||||
|
, target
|
||||||
|
, cv = sel_cv
|
||||||
|
, scoring = scoring_fn)
|
||||||
|
#==============================
|
||||||
|
# Extract mean values for CV
|
||||||
|
#==============================
|
||||||
|
mm_skf_scoresD[model_name] = {}
|
||||||
|
|
||||||
|
for key, value in skf_cv_modD.items():
|
||||||
|
print('\nkey:', key, '\nvalue:', value)
|
||||||
|
print('\nmean value:', np.mean(value))
|
||||||
|
mm_skf_scoresD[model_name][key] = round(np.mean(value),2)
|
||||||
|
|
||||||
|
# ADD more info: meta data related to input df
|
||||||
|
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
||||||
|
mm_skf_scoresD[model_name]['n_training_size'] = len(input_df)
|
||||||
|
mm_skf_scoresD[model_name]['n_trainingY_ratio'] = round(Counter(target)[0]/Counter(target)[1], 2)
|
||||||
|
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
||||||
|
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
||||||
|
|
||||||
|
# FS
|
||||||
|
#mnf = remove(model_name)
|
||||||
|
#model_pipeline.fit(input_df, target)
|
||||||
|
#print('\nFeature importance:', (model_pipeline.named_steps.model.feature_importances_))
|
||||||
|
#allf_xgboost = model_pipeline.feature_names_in_
|
||||||
|
#fsi_model = model_pipeline.named_steps.model.feature_importances_
|
||||||
|
#mm_skf_scoresD[model_name]['fs_importance'] = fsi_model
|
||||||
|
# TODO: add this as a key
|
||||||
|
#Add
|
||||||
|
|
||||||
|
#pyplot.bar(range(len(model_pipeline.named_steps.model.feature_importances_)), model_pipeline.named_steps.model.feature_importances_)
|
||||||
|
#pyplot.show()
|
||||||
|
#plot_importance(model_pipeline.named_steps.model.feature_importances_)
|
||||||
|
#pyplot.show()
|
||||||
|
|
||||||
|
|
||||||
|
if run_blind_test:
|
||||||
|
btD = {}
|
||||||
|
|
||||||
|
# Build bts numbers dict
|
||||||
|
btD = {'n_blindY_neg' : Counter(blind_test_target)[0]
|
||||||
|
, 'n_blindY_pos' : Counter(blind_test_target)[1]
|
||||||
|
, 'n_testY_ratio' : round(Counter(blind_test_target)[0]/Counter(blind_test_target)[1], 2)
|
||||||
|
, 'n_test_size' : len(blind_test_df) }
|
||||||
|
|
||||||
|
# Update cmD+tnD dicts with btD
|
||||||
|
mm_skf_scoresD[model_name].update(btD)
|
||||||
|
|
||||||
|
#--------------------------------------------------------
|
||||||
|
# Build the final results with all scores for the model
|
||||||
|
#--------------------------------------------------------
|
||||||
|
#bts_predict = gscv_fs.predict(blind_test_df)
|
||||||
|
model_pipeline.fit(input_df, target)
|
||||||
|
bts_predict = model_pipeline.predict(blind_test_df)
|
||||||
|
|
||||||
|
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
|
||||||
|
print('\nMCC on Blind test:' , bts_mcc_score)
|
||||||
|
#print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
|
||||||
|
|
||||||
|
mm_skf_scoresD[model_name]['bts_mcc'] = bts_mcc_score
|
||||||
|
mm_skf_scoresD[model_name]['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
|
||||||
|
mm_skf_scoresD[model_name]['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
|
||||||
|
mm_skf_scoresD[model_name]['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
|
||||||
|
mm_skf_scoresD[model_name]['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
|
||||||
|
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
|
||||||
|
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
||||||
|
|
||||||
|
return(mm_skf_scoresD)
|
||||||
|
#%%
|
||||||
|
sel_cv = skf_cv
|
||||||
|
# param dict for getmldata()
|
||||||
|
combined_model_paramD = {'data_combined_model' : False
|
||||||
|
, 'use_or' : False
|
||||||
|
, 'omit_all_genomic_features': False
|
||||||
|
, 'write_maskfile' : False
|
||||||
|
, 'write_outfile' : False }
|
||||||
|
#df = getmldata(gene, drug, **combined_model_paramD)
|
||||||
|
df = getmldata('pncA', 'pyrazinamide', **combined_model_paramD)
|
||||||
|
|
||||||
|
df2 = split_tts(df
|
||||||
|
, data_type = 'actual'
|
||||||
|
, split_type = '80_20'
|
||||||
|
, oversampling = False
|
||||||
|
, dst_colname = 'dst'
|
||||||
|
, target_colname = 'dst_mode'
|
||||||
|
, include_gene_name = True
|
||||||
|
, random_state = 42 # default
|
||||||
|
)
|
||||||
|
|
||||||
|
all(df2['X'].columns.isin(['gene_name']))
|
||||||
|
|
||||||
|
|
||||||
|
fooD = XGBClf (input_df = df2['X']
|
||||||
|
, target = df2['y']
|
||||||
|
, sel_cv = skf_cv
|
||||||
|
, run_blind_test = True
|
||||||
|
, blind_test_df = df2['X_bts']
|
||||||
|
, blind_test_target = df2['y_bts']
|
||||||
|
, tts_split_type = '80_20'
|
||||||
|
, var_type = 'mixed'
|
||||||
|
, resampling_type = 'none' # default
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
for k, v in fooD.items():
|
||||||
|
print('\nK:', k
|
||||||
|
, '\nTRAIN MCC:', fooD[k]['test_mcc']
|
||||||
|
, '\nBTS MCC:' , fooD[k]['bts_mcc'] )
|
||||||
|
|
||||||
|
#%%
|
||||||
|
# # fit model no training data
|
||||||
|
# model = XGBClassifier()
|
||||||
|
# model.fit( df2['X'], df2['y'])
|
||||||
|
# # feature importance
|
||||||
|
# print(model.feature_importances_)
|
||||||
|
# # plot
|
||||||
|
# pyplot.bar(range(len(model.feature_importances_)), model.feature_importances_)
|
||||||
|
# pyplot.show()
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue