diff --git a/scripts/count_vars_ML.R b/scripts/count_vars_ML.R index 8d2f4b8..28cf570 100644 --- a/scripts/count_vars_ML.R +++ b/scripts/count_vars_ML.R @@ -4,7 +4,7 @@ #source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/katg.R") -source("~/git/LSHTM_analysis/config/pnca.R") +#source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/rpob.R") source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") @@ -80,35 +80,35 @@ write.csv(merged_df2, outfile_merged_df2) ################################################### ################################################### ################################################### - -source("~/git/LSHTM_analysis/config/alr.R") -source("~/git/LSHTM_analysis/config/embb.R") -source("~/git/LSHTM_analysis/config/gid.R") -source("~/git/LSHTM_analysis/config/katg.R") -source("~/git/LSHTM_analysis/config/pnca.R") -source("~/git/LSHTM_analysis/config/rpob.R") - -df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") -df3 = read.csv(df3_filename) - -# mutationinformation -length(unique((df3$mutationinformation))) - -#dm _om -table(df3$mutation_info) -table(df3$mutation_info_labels) -table(df3$mutation_info_orig) -table(df3$mutation_info_labels_orig) - -# test_set -na_count <-sapply(df3, function(y) sum(length(which(is.na(y))))) -na_count[drug] - -# training set -table(df3[drug]) - -# drtype: MDR and XDR -#table(df3$drtype) orig i.e. incorrect ones! -table(df3$drtype_mode_labels) - - +# +# source("~/git/LSHTM_analysis/config/alr.R") +# source("~/git/LSHTM_analysis/config/embb.R") +# source("~/git/LSHTM_analysis/config/gid.R") +# source("~/git/LSHTM_analysis/config/katg.R") +# source("~/git/LSHTM_analysis/config/pnca.R") +# source("~/git/LSHTM_analysis/config/rpob.R") +# +# df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") +# df3 = read.csv(df3_filename) +# +# # mutationinformation +# length(unique((df3$mutationinformation))) +# +# #dm _om +# table(df3$mutation_info) +# table(df3$mutation_info_labels) +# table(df3$mutation_info_orig) +# table(df3$mutation_info_labels_orig) +# +# # test_set +# na_count <-sapply(df3, function(y) sum(length(which(is.na(y))))) +# na_count[drug] +# +# # training set +# table(df3[drug]) +# +# # drtype: MDR and XDR +# #table(df3$drtype) orig i.e. incorrect ones! +# table(df3$drtype_mode_labels) +# +#