ks test script added

This commit is contained in:
Tanushree Tunstall 2020-09-07 15:27:53 +01:00
parent b4affa0c94
commit 648be02665
4 changed files with 211 additions and 117 deletions

211
scripts/ks_test_PS.R Normal file
View file

@ -0,0 +1,211 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: KS test for PS/DUET lineage distributions
#=======================================================================
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/")
getwd()
#source("/plotting/Header_TT.R")
#source("../barplot_colour_function.R")
#require(data.table)
source("plotting/combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
###########################
# Data for stats
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info); str(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
table(my_df_dr$mutation_info)
# stats for all muts and dr_muts
# 1) for all muts
# 2) for dr_muts
#===========================
table(my_df$lineage); str(my_df$lineage)
table(my_df_dr$lineage); str(my_df_dr$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
# subset and refactor: all muts
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
df_lin$lineage = factor(df_lin$lineage)
# subset and refactor: dr muts
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
df_lin_dr$lineage = factor(df_lin_dr$lineage)
#{RESULT: No of samples within lineage}
table(df_lin$lineage)
table(df_lin_dr$lineage)
#{Result: No. of unique mutations the 4 lineages contribute to}
length(unique(df_lin$mutationinformation))
length(unique(df_lin_dr$mutationinformation))
# COMPARING DISTRIBUTIONS
#================
# ALL mutations
#=================
head(df_lin$lineage)
df_lin$lineage = as.character(df_lin$lineage)
lin1 = df_lin[df_lin$lineage == "lineage1",]$duet_scaled
lin2 = df_lin[df_lin$lineage == "lineage2",]$duet_scaled
lin3 = df_lin[df_lin$lineage == "lineage3",]$duet_scaled
lin4 = df_lin[df_lin$lineage == "lineage4",]$duet_scaled
# ks test
lin12 = ks.test(lin1,lin2)
lin12_df = as.data.frame(cbind(lin12$data.name, lin12$p.value))
lin13 = ks.test(lin1,lin3)
lin13_df = as.data.frame(cbind(lin13$data.name, lin13$p.value))
lin14 = ks.test(lin1,lin4)
lin14_df = as.data.frame(cbind(lin14$data.name, lin14$p.value))
lin23 = ks.test(lin2,lin3)
lin23_df = as.data.frame(cbind(lin23$data.name, lin23$p.value))
lin24 = ks.test(lin2,lin4)
lin24_df = as.data.frame(cbind(lin24$data.name, lin24$p.value))
lin34 = ks.test(lin3,lin4)
lin34_df = as.data.frame(cbind(lin34$data.name, lin34$p.value))
ks_results_all = rbind(lin12_df
, lin13_df
, lin14_df
, lin23_df
, lin24_df
, lin34_df)
#p-value < 2.2e-16
rm(lin12, lin12_df
, lin13, lin13_df
, lin14, lin14_df
, lin23, lin23_df
, lin24, lin24_df
, lin34, lin34_df)
#================
# DRUG mutations
#=================
head(df_lin_dr$lineage)
df_lin_dr$lineage = as.character(df_lin_dr$lineage)
lin1_dr = df_lin_dr[df_lin_dr$lineage == "lineage1",]$duet_scaled
lin2_dr = df_lin_dr[df_lin_dr$lineage == "lineage2",]$duet_scaled
lin3_dr = df_lin_dr[df_lin_dr$lineage == "lineage3",]$duet_scaled
lin4_dr = df_lin_dr[df_lin_dr$lineage == "lineage4",]$duet_scaled
# ks test: dr muts
lin12_dr = ks.test(lin1_dr,lin2_dr)
lin12_df_dr = as.data.frame(cbind(lin12_dr$data.name, lin12_dr$p.value))
lin13_dr = ks.test(lin1_dr,lin3_dr)
lin13_df_dr = as.data.frame(cbind(lin13_dr$data.name, lin13_dr$p.value))
lin14_dr = ks.test(lin1_dr,lin4_dr)
lin14_df_dr = as.data.frame(cbind(lin14_dr$data.name, lin14_dr$p.value))
lin23_dr = ks.test(lin2_dr,lin3_dr)
lin23_df_dr = as.data.frame(cbind(lin23_dr$data.name, lin23_dr$p.value))
lin24_dr = ks.test(lin2_dr,lin4_dr)
lin24_df_dr = as.data.frame(cbind(lin24_dr$data.name, lin24_dr$p.value))
lin34_dr = ks.test(lin3_dr,lin4_dr)
lin34_df_dr = as.data.frame(cbind(lin34_dr$data.name, lin34_dr$p.value))
ks_results_dr = rbind(lin12_df_dr
, lin13_df_dr
, lin14_df_dr
, lin23_df_dr
, lin24_df_dr
, lin34_df_dr)
ks_results_combined = cbind(ks_results_all, ks_results_dr)
my_colnames = c("Lineage_comparisons"
, paste0("All_mutations n=", nrow(df_lin))
, paste0("Drug_associated_mutations n=", nrow(df_lin_dr)))
my_colnames
# select the output columns
ks_results_combined_f = ks_results_combined[,c(1,2,4)]
colnames(ks_results_combined_f) = my_colnames
ks_results_combined_f
#=============
# write output file
#=============
ks_results = paste0(outdir,"/results/ks_results.csv")
write.csv(ks_results_combined_f, ks_results, row.names = F)

View file

@ -1,45 +0,0 @@
#!/usr/bin/env python3
#=======================================================================
#%% useful links
#https://towardsdatascience.com/autoviz-automatically-visualize-any-dataset-ba2691a8b55a
#https://pypi.org/project/autoviz/
#=======================================================================
import os, sys
import pandas as pd
import numpy as np
import re
import argparse
from autoviz.AutoViz_Class import AutoViz_Class
homedir = os.path.expanduser('~')
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
#%%============================================================================
# variables
gene = 'pncA'
drug = 'pyrazinamide'
#%%============================================================================
#==============
# directories
#==============
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/input'
outdir = datadir + '/' + drug + '/output'
#=======
# input
#=======
in_filename_plotting = 'car_design.csv'
in_filename_plotting = gene.lower() + '_all_params.csv'
infile_plotting = outdir + '/' + in_filename_plotting
print('plotting file: ', infile_plotting
, '\n============================================================')
#=======================================================================
plotting_df = pd.read_csv(infile_plotting, sep = ',')
#Instantiate the AutoViz class
AV = AutoViz_Class()
df = AV.AutoViz(infile_plotting)
#df2 = AV.AutoViz(plotting_df)
plotting_df.columns[~plotting_df.columns.isin(df.columns)]

View file

@ -1,4 +1,3 @@
#!/usr/bin/env Rscript #!/usr/bin/env Rscript
######################################################### #########################################################
# TASK: Basic lineage barplot showing numbers # TASK: Basic lineage barplot showing numbers

View file

@ -1,71 +0,0 @@
#=============
# merged_df2
#=============
----------------
# no. of samples
----------------
Var1 Freq
1 8
2 lineage1 144
3 lineage1;lineage2 3
4 lineage1;lineage4 4
5 lineage2 1886
6 lineage2;lineage4 19
7 lineage3 190
8 lineage3;lineage4 11
9 lineage4 2213
10 lineage4;lineage6 1
11 lineage4;lineage7 1
12 lineage4;lineageBOV 1
13 lineage5 31
14 lineage6 9
15 lineage7 3
16 lineageBOV 392
----------------
# no. of nsSNPs
----------------
sel_lineages num_snps_u total_samples
1 lineage1 74 144
2 lineage2 277 1886
3 lineage3 104 190
4 lineage4 311 2213
5 lineage5 18 31
6 lineage6 8 9
7 lineage7 1 3
#=============
# merged_df2_comp
#=============
----------------
# no. of samples
----------------
Var1 Freq
1 3
2 lineage1 108
3 lineage1;lineage2 2
4 lineage1;lineage4 2
5 lineage2 1497
6 lineage2;lineage4 13
7 lineage3 154
8 lineage3;lineage4 3
9 lineage4 1846
10 lineage4;lineageBOV 1
11 lineage5 12
12 lineage6 2
13 lineageBOV 36
----------------
# no. of nsSNPs
----------------
sel_lineages num_snps_u total_samples
1 lineage1 42 108
2 lineage2 141 1497
3 lineage3 75 154
4 lineage4 148 1846
5 lineage5 9 12
6 lineage6 2 2
7 lineage7 0 0