ks test script added
This commit is contained in:
parent
b4affa0c94
commit
648be02665
4 changed files with 211 additions and 117 deletions
211
scripts/ks_test_PS.R
Normal file
211
scripts/ks_test_PS.R
Normal file
|
@ -0,0 +1,211 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: KS test for PS/DUET lineage distributions
|
||||
#=======================================================================
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/")
|
||||
getwd()
|
||||
|
||||
#source("/plotting/Header_TT.R")
|
||||
#source("../barplot_colour_function.R")
|
||||
#require(data.table)
|
||||
source("plotting/combining_dfs_plotting.R")
|
||||
# should return the following dfs, directories and variables
|
||||
|
||||
# PS combined:
|
||||
# 1) merged_df2
|
||||
# 2) merged_df2_comp
|
||||
# 3) merged_df3
|
||||
# 4) merged_df3_comp
|
||||
|
||||
# LIG combined:
|
||||
# 5) merged_df2_lig
|
||||
# 6) merged_df2_comp_lig
|
||||
# 7) merged_df3_lig
|
||||
# 8) merged_df3_comp_lig
|
||||
|
||||
# 9) my_df_u
|
||||
# 10) my_df_u_lig
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nAngstrom symbol:", angstroms_symbol
|
||||
, "\nNo. of duplicated muts:", dup_muts_nu
|
||||
, "\nNA count for ORs:", na_count
|
||||
, "\nNA count in df2:", na_count_df2
|
||||
, "\nNA count in df3:", na_count_df3))
|
||||
|
||||
###########################
|
||||
# Data for stats
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
is.factor(my_df$lineage)
|
||||
my_df$lineage = as.factor(my_df$lineage)
|
||||
is.factor(my_df$lineage)
|
||||
|
||||
table(my_df$mutation_info); str(my_df$mutation_info)
|
||||
|
||||
# subset df with dr muts only
|
||||
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
|
||||
table(my_df_dr$mutation_info)
|
||||
|
||||
# stats for all muts and dr_muts
|
||||
# 1) for all muts
|
||||
# 2) for dr_muts
|
||||
#===========================
|
||||
table(my_df$lineage); str(my_df$lineage)
|
||||
table(my_df_dr$lineage); str(my_df_dr$lineage)
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("lineage1"
|
||||
, "lineage2"
|
||||
, "lineage3"
|
||||
, "lineage4")
|
||||
|
||||
# subset and refactor: all muts
|
||||
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
|
||||
df_lin$lineage = factor(df_lin$lineage)
|
||||
|
||||
# subset and refactor: dr muts
|
||||
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
|
||||
df_lin_dr$lineage = factor(df_lin_dr$lineage)
|
||||
|
||||
|
||||
#{RESULT: No of samples within lineage}
|
||||
table(df_lin$lineage)
|
||||
table(df_lin_dr$lineage)
|
||||
|
||||
#{Result: No. of unique mutations the 4 lineages contribute to}
|
||||
length(unique(df_lin$mutationinformation))
|
||||
length(unique(df_lin_dr$mutationinformation))
|
||||
|
||||
|
||||
# COMPARING DISTRIBUTIONS
|
||||
#================
|
||||
# ALL mutations
|
||||
#=================
|
||||
head(df_lin$lineage)
|
||||
df_lin$lineage = as.character(df_lin$lineage)
|
||||
|
||||
lin1 = df_lin[df_lin$lineage == "lineage1",]$duet_scaled
|
||||
lin2 = df_lin[df_lin$lineage == "lineage2",]$duet_scaled
|
||||
lin3 = df_lin[df_lin$lineage == "lineage3",]$duet_scaled
|
||||
lin4 = df_lin[df_lin$lineage == "lineage4",]$duet_scaled
|
||||
|
||||
# ks test
|
||||
lin12 = ks.test(lin1,lin2)
|
||||
lin12_df = as.data.frame(cbind(lin12$data.name, lin12$p.value))
|
||||
|
||||
lin13 = ks.test(lin1,lin3)
|
||||
lin13_df = as.data.frame(cbind(lin13$data.name, lin13$p.value))
|
||||
|
||||
lin14 = ks.test(lin1,lin4)
|
||||
lin14_df = as.data.frame(cbind(lin14$data.name, lin14$p.value))
|
||||
|
||||
lin23 = ks.test(lin2,lin3)
|
||||
lin23_df = as.data.frame(cbind(lin23$data.name, lin23$p.value))
|
||||
|
||||
lin24 = ks.test(lin2,lin4)
|
||||
lin24_df = as.data.frame(cbind(lin24$data.name, lin24$p.value))
|
||||
|
||||
lin34 = ks.test(lin3,lin4)
|
||||
lin34_df = as.data.frame(cbind(lin34$data.name, lin34$p.value))
|
||||
|
||||
ks_results_all = rbind(lin12_df
|
||||
, lin13_df
|
||||
, lin14_df
|
||||
, lin23_df
|
||||
, lin24_df
|
||||
, lin34_df)
|
||||
|
||||
#p-value < 2.2e-16
|
||||
rm(lin12, lin12_df
|
||||
, lin13, lin13_df
|
||||
, lin14, lin14_df
|
||||
, lin23, lin23_df
|
||||
, lin24, lin24_df
|
||||
, lin34, lin34_df)
|
||||
|
||||
#================
|
||||
# DRUG mutations
|
||||
#=================
|
||||
head(df_lin_dr$lineage)
|
||||
df_lin_dr$lineage = as.character(df_lin_dr$lineage)
|
||||
|
||||
lin1_dr = df_lin_dr[df_lin_dr$lineage == "lineage1",]$duet_scaled
|
||||
lin2_dr = df_lin_dr[df_lin_dr$lineage == "lineage2",]$duet_scaled
|
||||
lin3_dr = df_lin_dr[df_lin_dr$lineage == "lineage3",]$duet_scaled
|
||||
lin4_dr = df_lin_dr[df_lin_dr$lineage == "lineage4",]$duet_scaled
|
||||
|
||||
# ks test: dr muts
|
||||
lin12_dr = ks.test(lin1_dr,lin2_dr)
|
||||
lin12_df_dr = as.data.frame(cbind(lin12_dr$data.name, lin12_dr$p.value))
|
||||
|
||||
lin13_dr = ks.test(lin1_dr,lin3_dr)
|
||||
lin13_df_dr = as.data.frame(cbind(lin13_dr$data.name, lin13_dr$p.value))
|
||||
|
||||
lin14_dr = ks.test(lin1_dr,lin4_dr)
|
||||
lin14_df_dr = as.data.frame(cbind(lin14_dr$data.name, lin14_dr$p.value))
|
||||
|
||||
lin23_dr = ks.test(lin2_dr,lin3_dr)
|
||||
lin23_df_dr = as.data.frame(cbind(lin23_dr$data.name, lin23_dr$p.value))
|
||||
|
||||
lin24_dr = ks.test(lin2_dr,lin4_dr)
|
||||
lin24_df_dr = as.data.frame(cbind(lin24_dr$data.name, lin24_dr$p.value))
|
||||
|
||||
lin34_dr = ks.test(lin3_dr,lin4_dr)
|
||||
lin34_df_dr = as.data.frame(cbind(lin34_dr$data.name, lin34_dr$p.value))
|
||||
|
||||
ks_results_dr = rbind(lin12_df_dr
|
||||
, lin13_df_dr
|
||||
, lin14_df_dr
|
||||
, lin23_df_dr
|
||||
, lin24_df_dr
|
||||
, lin34_df_dr)
|
||||
|
||||
ks_results_combined = cbind(ks_results_all, ks_results_dr)
|
||||
|
||||
my_colnames = c("Lineage_comparisons"
|
||||
, paste0("All_mutations n=", nrow(df_lin))
|
||||
, paste0("Drug_associated_mutations n=", nrow(df_lin_dr)))
|
||||
my_colnames
|
||||
|
||||
# select the output columns
|
||||
ks_results_combined_f = ks_results_combined[,c(1,2,4)]
|
||||
|
||||
colnames(ks_results_combined_f) = my_colnames
|
||||
ks_results_combined_f
|
||||
|
||||
#=============
|
||||
# write output file
|
||||
#=============
|
||||
ks_results = paste0(outdir,"/results/ks_results.csv")
|
||||
write.csv(ks_results_combined_f, ks_results, row.names = F)
|
||||
|
|
@ -1,45 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
#=======================================================================
|
||||
#%% useful links
|
||||
#https://towardsdatascience.com/autoviz-automatically-visualize-any-dataset-ba2691a8b55a
|
||||
#https://pypi.org/project/autoviz/
|
||||
#=======================================================================
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
import argparse
|
||||
from autoviz.AutoViz_Class import AutoViz_Class
|
||||
|
||||
homedir = os.path.expanduser('~')
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||
#%%============================================================================
|
||||
# variables
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
||||
#%%============================================================================
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
indir = datadir + '/' + drug + '/input'
|
||||
|
||||
outdir = datadir + '/' + drug + '/output'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
in_filename_plotting = 'car_design.csv'
|
||||
in_filename_plotting = gene.lower() + '_all_params.csv'
|
||||
infile_plotting = outdir + '/' + in_filename_plotting
|
||||
print('plotting file: ', infile_plotting
|
||||
, '\n============================================================')
|
||||
#=======================================================================
|
||||
plotting_df = pd.read_csv(infile_plotting, sep = ',')
|
||||
#Instantiate the AutoViz class
|
||||
AV = AutoViz_Class()
|
||||
df = AV.AutoViz(infile_plotting)
|
||||
#df2 = AV.AutoViz(plotting_df)
|
||||
plotting_df.columns[~plotting_df.columns.isin(df.columns)]
|
|
@ -1,4 +1,3 @@
|
|||
|
||||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: Basic lineage barplot showing numbers
|
||||
|
|
|
@ -1,71 +0,0 @@
|
|||
#=============
|
||||
# merged_df2
|
||||
#=============
|
||||
----------------
|
||||
# no. of samples
|
||||
----------------
|
||||
Var1 Freq
|
||||
1 8
|
||||
2 lineage1 144
|
||||
3 lineage1;lineage2 3
|
||||
4 lineage1;lineage4 4
|
||||
5 lineage2 1886
|
||||
6 lineage2;lineage4 19
|
||||
7 lineage3 190
|
||||
8 lineage3;lineage4 11
|
||||
9 lineage4 2213
|
||||
10 lineage4;lineage6 1
|
||||
11 lineage4;lineage7 1
|
||||
12 lineage4;lineageBOV 1
|
||||
13 lineage5 31
|
||||
14 lineage6 9
|
||||
15 lineage7 3
|
||||
16 lineageBOV 392
|
||||
|
||||
----------------
|
||||
# no. of nsSNPs
|
||||
----------------
|
||||
|
||||
sel_lineages num_snps_u total_samples
|
||||
1 lineage1 74 144
|
||||
2 lineage2 277 1886
|
||||
3 lineage3 104 190
|
||||
4 lineage4 311 2213
|
||||
5 lineage5 18 31
|
||||
6 lineage6 8 9
|
||||
7 lineage7 1 3
|
||||
|
||||
|
||||
#=============
|
||||
# merged_df2_comp
|
||||
#=============
|
||||
----------------
|
||||
# no. of samples
|
||||
----------------
|
||||
|
||||
Var1 Freq
|
||||
1 3
|
||||
2 lineage1 108
|
||||
3 lineage1;lineage2 2
|
||||
4 lineage1;lineage4 2
|
||||
5 lineage2 1497
|
||||
6 lineage2;lineage4 13
|
||||
7 lineage3 154
|
||||
8 lineage3;lineage4 3
|
||||
9 lineage4 1846
|
||||
10 lineage4;lineageBOV 1
|
||||
11 lineage5 12
|
||||
12 lineage6 2
|
||||
13 lineageBOV 36
|
||||
|
||||
----------------
|
||||
# no. of nsSNPs
|
||||
----------------
|
||||
sel_lineages num_snps_u total_samples
|
||||
1 lineage1 42 108
|
||||
2 lineage2 141 1497
|
||||
3 lineage3 75 154
|
||||
4 lineage4 148 1846
|
||||
5 lineage5 9 12
|
||||
6 lineage6 2 2
|
||||
7 lineage7 0 0
|
Loading…
Add table
Add a link
Reference in a new issue