added dynamut dir

This commit is contained in:
Tanushree Tunstall 2021-02-09 16:11:07 +00:00
parent 534a6754cd
commit 64018cce4c
2 changed files with 147 additions and 0 deletions

46
dynamut/dynamut.py Executable file
View file

@ -0,0 +1,46 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 19 14:33:51 2020
@author: tanu
"""
#%% load packages
import os,sys
import subprocess
import argparse
import requests
import re
import time
from bs4 import BeautifulSoup
import pandas as pd
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
#%%============================================================================
#1) define muts batch
#take mcsm file
#split into 'n' batches
#write output file with suffix of batch number
#********** done this par ****************
#2) get results for a batch url
# read file
# store batch url
#extract number
#build single url
#build single results urls
#get results and store them in df
#update df
#dim of df = no. of muts in batch
#3) format results
# store unit measurements separtely
# omit unit measurements from cols
# create extra columns '_outcome' suffix by splitting numerical output
# create separate col for mcsm as it doesn't have output text
#%%============================================================================

101
dynamut/dynamut_test.py Executable file
View file

@ -0,0 +1,101 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 19 14:33:51 2020
@author: tanu
"""
#%% load packages
import os,sys
import subprocess
import argparse
import requests
import re
import time
from bs4 import BeautifulSoup
import pandas as pd
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
#%%============================================================================
batch_result_url = 'http://biosig.unimelb.edu.au/dynamut/results_prediction/15955901077'
mut = 'S104R'
single_result_url = 'http://biosig.unimelb.edu.au/dynamut/single_results/15955901077' + '/' + mut
#%%============================================================================
param_dict = {}
result_response = requests.get(single_result_url)
if result_response.status_code == 200:
print('Fetching results')
# extract results using the html parser
soup = BeautifulSoup(result_response.text, features = 'html.parser')
#web_result_raw = soup.find(id = 'predictions').get_text()
ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text()
ddg_encom = soup.find(id = 'ddg_encom').get_text()
ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text()
ddg_sdm = soup.find(id = 'ddg_sdm').get_text()
ddg_duet = soup.find(id = 'ddg_duet').get_text()
dds_encom = soup.find(id = 'dds_encom').get_text()
param_dict = {"mutationinformation" : mut
, "ddg_dynamut" : ddg_dynamut
, "ddg_encom" : ddg_encom
, "ddg_mcsm" : ddg_mcsm
, "ddg_sdm" : ddg_sdm
, "ddg_duet" : ddg_duet
, "dds_encom" : dds_encom
}
results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T
#%% for loop
#%%
host_dynamut = 'http://biosig.unimelb.edu.au/dynamut'
batch_url_number = re.search(r'([0-9]+)$', batch_result_url).group(0)
single_url = host_dynamut + '/single_results/' + batch_url_number
muts = ["S104R", "G24R"]
# initilialise empty df
dynamut_results_df = pd.DataFrame()
for i, mut in enumerate(muts):
#param_dict = {}
print('Running mutation', i, ':', mut)
snp = mut
single_result_url = single_url + '/' + snp
print('Getting results from:', single_result_url)
result_response = requests.get(single_result_url)
if result_response.status_code == 200:
print('Fetching results')
# extract results using the html parser
soup = BeautifulSoup(result_response.text, features = 'html.parser')
#web_result_raw = soup.find(id = 'predictions').get_text()
ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text()
ddg_encom = soup.find(id = 'ddg_encom').get_text()
ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text()
ddg_sdm = soup.find(id = 'ddg_sdm').get_text()
ddg_duet = soup.find(id = 'ddg_duet').get_text()
dds_encom = soup.find(id = 'dds_encom').get_text()
param_dict = {"mutationinformation" : snp
, "ddg_dynamut" : ddg_dynamut
, "ddg_encom" : ddg_encom
, "ddg_mcsm" : ddg_mcsm
, "ddg_sdm" : ddg_sdm
, "ddg_duet" : ddg_duet
, "dds_encom" : dds_encom
}
results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T
print(results_df)
dynamut_results_df = dynamut_results_df.append(results_df)
print(dynamut_results_df)