moved logoP_msa_raw to redundant
This commit is contained in:
parent
3bc5dcbad3
commit
6365fff858
1 changed files with 0 additions and 319 deletions
|
@ -1,319 +0,0 @@
|
|||
#####################################################################################
|
||||
# LogoPlotMSA():
|
||||
# Input:
|
||||
# Data:
|
||||
# msaSeq_mut: MSA chr vector for muts
|
||||
# msaSeq_wt [Optional]: MSA chr vector for wt
|
||||
|
||||
# Others params:
|
||||
# plot_positions: can choose what positions to plot
|
||||
# msa_method : can be "bits" or "probability"
|
||||
# my_logo_col : can be "chemistry", "hydrophobicity", "taylor" or "clustalx"
|
||||
|
||||
# Returns data LogoPlot from MSA
|
||||
|
||||
#...
|
||||
|
||||
# TODO: SHINY
|
||||
# drop down: my_logo_col i.e the 4 colour choices
|
||||
# drop down: for DataED_PFM(), ED score options:
|
||||
# c("log", log-odds", "diff", "probKL", "ratio", "unscaled_log", "wKL")
|
||||
# drop down/enter field: for DataED_PFM(), background probability
|
||||
# Make it hover over position and then get the corresponding data table!
|
||||
###################################################################################
|
||||
|
||||
#==================
|
||||
# logo data: OR
|
||||
#==================
|
||||
LogoPlotMSA <- function(msaSeq_mut
|
||||
, msaSeq_wt
|
||||
, plot_positions
|
||||
, msa_method = 'bits' # or probability
|
||||
, my_logo_col = "chemistry"
|
||||
, x_lab = "Wild-type position"
|
||||
, y_lab = ""
|
||||
, x_ats = 13 # text size
|
||||
, x_tangle = 90 # text angle
|
||||
, x_axis_offset = 0.07 # dist b/w y-axis and plot start
|
||||
, y_ats = 13
|
||||
, y_tangle = 0
|
||||
, x_tts = 13 # title size
|
||||
, y_tts = 13
|
||||
, leg_pos = "top" # can be top, left, right and bottom or c(0.8, 0.9)
|
||||
, leg_dir = "horizontal" #can be vertical or horizontal
|
||||
, leg_ts = 16 # leg text size
|
||||
, leg_tts = 16 # leg title size
|
||||
)
|
||||
|
||||
{
|
||||
|
||||
############################################
|
||||
# Data processing for logo plot for nsSNPS
|
||||
###########################################
|
||||
cat("\nLength of MSA", length(msaSeq_mut)
|
||||
, "\nlength of WT seq:", length(msaSeq_wt))
|
||||
|
||||
if(missing(plot_positions)){
|
||||
#if(is.null(plot_positions)){
|
||||
cat("\n======================="
|
||||
, "\nPlotting entire MSA"
|
||||
, "\n========================")
|
||||
msa_seq_plot = msaSeq_mut
|
||||
msa_all_interim = sapply(msa_seq_plot, function(x) unlist(strsplit(x,"")))
|
||||
msa_all_interimDF = data.frame(msa_all_interim)
|
||||
msa_all_pos = as.numeric(rownames(msa_all_interimDF))
|
||||
|
||||
wt_seq_plot = msaSeq_wt
|
||||
wt_all_interim = sapply(wt_seq_plot, function(x) unlist(strsplit(x,"")))
|
||||
wt_all_interimDF = data.frame(wt_all_interim)
|
||||
wt_all_pos = as.numeric(rownames(wt_all_interimDF))
|
||||
|
||||
|
||||
} else {
|
||||
cat("\nUser specified plotting positions for MSA:"
|
||||
, "\nThese are:\n", plot_positions
|
||||
, "\nSorting plot positions...")
|
||||
|
||||
plot_positions = sort(plot_positions)
|
||||
|
||||
cat("\nPlotting positions sorted:\n"
|
||||
, plot_positions)
|
||||
|
||||
#-----------
|
||||
# MSA: mut
|
||||
#-----------
|
||||
cat("\n==========================================="
|
||||
, "\nGenerating MSA: filtered positions"
|
||||
, "\n===========================================")
|
||||
|
||||
msa_interim = sapply(msaSeq_mut, function(x) unlist(strsplit(x,"")))
|
||||
msa_interimDF = data.frame(msa_interim)
|
||||
msa_pos = as.numeric(rownames(msa_interimDF))
|
||||
|
||||
if (all(plot_positions%in%msa_pos)){
|
||||
cat("\nAll positions within range"
|
||||
, "\nProceeding with generating requested position MSA seqs..."
|
||||
, "\nNo. of positions in plot:", length(plot_positions))
|
||||
i_extract = plot_positions
|
||||
dfP1 = msa_interimDF[i_extract,]
|
||||
|
||||
}else{
|
||||
cat("\nNo. of positions selected:", length(plot_positions))
|
||||
i_ofr = plot_positions[!plot_positions%in%msa_pos]
|
||||
cat("\n1 or more plot_positions out of range..."
|
||||
, "\nThese are:\n", i_ofr
|
||||
, "\nQuitting! Resubmit with correct plot_positions")
|
||||
#i_extract = plot_positions[plot_positions%in%msa_pos]
|
||||
#cat("\nFinal no. of positions being plottted:", length(i_extract)
|
||||
# , "\nNo. of positions dropped from request:", length(i_ofr))
|
||||
quit()
|
||||
}
|
||||
|
||||
#matP1 = msa_interim[i_extract, 1:ncol(msa_interim)]
|
||||
#dfP1 = msa_interimDF[i_extract,]
|
||||
dfP1 = data.frame(t(dfP1))
|
||||
names(dfP1) = i_extract
|
||||
cols_to_paste = names(dfP1)
|
||||
dfP1['chosen_seq'] = apply(dfP1[ , cols_to_paste]
|
||||
, 1
|
||||
, paste, sep = ''
|
||||
, collapse = "")
|
||||
|
||||
msa_seq_plot = dfP1$chosen_seq
|
||||
|
||||
#-----------
|
||||
# WT: fasta
|
||||
#-----------
|
||||
cat("\n========================================="
|
||||
, "\nGenerating WT fasta: filtered positions"
|
||||
,"\n===========================================")
|
||||
wt_interim = sapply(msaSeq_wt, function(x) unlist(strsplit(x,"")))
|
||||
wt_interimDF = data.frame(wt_interim)
|
||||
wt_pos = as.numeric(rownames(wt_interimDF))
|
||||
|
||||
if (all(plot_positions%in%wt_pos)){
|
||||
cat("\nAll positions within range"
|
||||
, "\nProceeding with generating requested position MSA seqs..."
|
||||
, "\nplot positions:", length(plot_positions))
|
||||
i2_extract = plot_positions
|
||||
}else{
|
||||
cat("\nNo. of positions selected:", length(plot_positions))
|
||||
i2_ofr = plot_positions[!plot_positions%in%wt_pos]
|
||||
cat("\n1 or more plot_positions out of range..."
|
||||
, "\nThese are:\n", i_ofr
|
||||
, "\nQuitting! Resubmit with correct plot_positions")
|
||||
#i2_extract = plot_positions[plot_positions%in%wt_pos]
|
||||
#cat("\nFinal no. of positions being plottted:", length(i2_extract)
|
||||
# , "\nNo. of positions dropped from request:", length(i2_ofr))
|
||||
quit()
|
||||
}
|
||||
|
||||
#matP1 = msa_interim[i_extract, 1:ncol(msa_interim)]
|
||||
dfP2 = wt_interimDF[i2_extract,]
|
||||
dfP2 = data.frame(t(dfP2))
|
||||
names(dfP2) = i2_extract
|
||||
cols_to_paste2 = names(dfP2)
|
||||
dfP2['chosen_seq'] = apply( dfP2[ , cols_to_paste2]
|
||||
, 1
|
||||
, paste, sep = ''
|
||||
, collapse = "")
|
||||
|
||||
wt_seq_plot = dfP2$chosen_seq
|
||||
}
|
||||
|
||||
######################################
|
||||
# Generating plots for muts and wt
|
||||
#####################################
|
||||
|
||||
if (my_logo_col %in% c('clustalx','taylor')) {
|
||||
cat("\nSelected colour scheme:", my_logo_col
|
||||
, "\nUsing black theme\n")
|
||||
|
||||
theme_bgc = "black"
|
||||
xfont_bgc = "white"
|
||||
yfont_bgc = "white"
|
||||
xtt_col = "white"
|
||||
ytt_col = "white"
|
||||
}
|
||||
|
||||
if (my_logo_col %in% c('chemistry', 'hydrophobicity')) {
|
||||
cat("\nstart of MSA"
|
||||
, '\nSelected colour scheme:', my_logo_col
|
||||
, "\nUsing grey theme")
|
||||
|
||||
theme_bgc = "grey"
|
||||
xfont_bgc = "black"
|
||||
yfont_bgc = "black"
|
||||
xtt_col = "black"
|
||||
ytt_col = "black"
|
||||
}
|
||||
|
||||
#####################################
|
||||
# Generating logo plots for nsSNPs
|
||||
#####################################
|
||||
LogoPlotMSAL <- list()
|
||||
|
||||
#-------------------
|
||||
# Mutant logo plot
|
||||
#-------------------
|
||||
p0 = ggseqlogo(msa_seq_plot
|
||||
, facet = "grid"
|
||||
, method = msa_method
|
||||
, col_scheme = my_logo_col
|
||||
, seq_type = 'aa') +
|
||||
theme(legend.position = leg_pos
|
||||
, legend.direction = leg_dir
|
||||
#, legend.title = element_blank()
|
||||
, legend.title = element_text(size = leg_tts
|
||||
, colour = ytt_col)
|
||||
, legend.text = element_text(size = leg_ts)
|
||||
|
||||
, axis.text.x = element_text(size = x_ats
|
||||
, angle = x_tangle
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = xfont_bgc)
|
||||
#, axis.text.y = element_blank()
|
||||
, axis.text.y = element_text(size = y_ats
|
||||
, angle = y_tangle
|
||||
, hjust = 1
|
||||
, vjust = -1.0
|
||||
, colour = yfont_bgc)
|
||||
, axis.title.x = element_text(size = x_tts
|
||||
, colour = xtt_col)
|
||||
, axis.title.y = element_text(size = y_tts
|
||||
, colour = ytt_col)
|
||||
, plot.background = element_rect(fill = theme_bgc))+
|
||||
xlab(x_lab)
|
||||
|
||||
if (missing(plot_positions)){
|
||||
msa_mut_logo_P = p0 +
|
||||
scale_x_discrete(breaks = msa_all_pos
|
||||
, expand = c(0.02,0)
|
||||
, labels = msa_all_pos
|
||||
, limits = factor(msa_all_pos))
|
||||
|
||||
}else{
|
||||
msa_mut_logo_P = p0 +
|
||||
scale_y_continuous(expand = c(0,0.09)) +
|
||||
scale_x_discrete(breaks = i_extract
|
||||
, expand = c(x_axis_offset,0)
|
||||
, labels = i_extract
|
||||
, limits = factor(i_extract))
|
||||
}
|
||||
|
||||
cat('\nDone: MSA plot for mutations')
|
||||
#return(msa_mut_logoP)
|
||||
LogoPlotMSAL[['msa_mut_logoP']] <- msa_mut_logo_P
|
||||
|
||||
#---------------------------------
|
||||
# Wild-type MSA: gene_fasta file
|
||||
#---------------------------------
|
||||
p1 = ggseqlogo(wt_seq_plot
|
||||
, facet = "grid"
|
||||
, method = msa_method
|
||||
, col_scheme = my_logo_col
|
||||
, seq_type = 'aa') +
|
||||
|
||||
theme(legend.position = "none"
|
||||
, legend.direction = leg_dir
|
||||
#, legend.title = element_blank()
|
||||
, legend.title = element_text(size = leg_tts
|
||||
, colour = ytt_col)
|
||||
, legend.text = element_text(size = leg_ts)
|
||||
|
||||
, axis.text.x = element_text(size = x_ats
|
||||
, angle = x_tangle
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = xfont_bgc)
|
||||
, axis.text.y = element_blank()
|
||||
|
||||
, axis.title.x = element_text(size = x_tts
|
||||
, colour = xtt_col)
|
||||
, axis.title.y = element_text(size = y_tts
|
||||
, colour = ytt_col)
|
||||
|
||||
, plot.background = element_rect(fill = theme_bgc)) +
|
||||
ylab("") + xlab("Wild-type position")
|
||||
|
||||
if (missing(plot_positions)){
|
||||
msa_wt_logo_P = p1 +
|
||||
scale_x_discrete(breaks = wt_all_pos
|
||||
, expand = c(0.02,0)
|
||||
, labels = wt_all_pos
|
||||
, limits = factor(wt_all_pos) )
|
||||
|
||||
}else{
|
||||
msa_wt_logo_P = p1 +
|
||||
scale_y_continuous(expand = c(0,0.09)) +
|
||||
scale_x_discrete(breaks = i2_extract
|
||||
, expand = c(x_axis_offset, 0)
|
||||
, labels = i2_extract
|
||||
, limits = factor(i2_extract))
|
||||
}
|
||||
|
||||
cat('\nDone: MSA plot for WT')
|
||||
#return(msa_wt_logoP)
|
||||
LogoPlotMSAL[['msa_wt_logoP']] <- msa_wt_logo_P
|
||||
|
||||
#=========================================
|
||||
# Output
|
||||
# Combined plot: logo_MSA
|
||||
#=========================================
|
||||
|
||||
cat('\nDone: msa_mut_logoP + msa_wt_logoP')
|
||||
|
||||
# colour scheme: https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
||||
#cat("\nOutput plot:", LogoSNPs_comb, "\n")
|
||||
#svg(LogoSNPs_combined, width = 32, height = 10)
|
||||
|
||||
LogoMSA_comb = cowplot::plot_grid(LogoPlotMSAL[['msa_mut_logoP']]
|
||||
, LogoPlotMSAL[['msa_wt_logoP']]
|
||||
, nrow = 2
|
||||
, align = "v"
|
||||
, rel_heights = c(3/4, 1/4))
|
||||
|
||||
return(LogoMSA_comb)
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue