renamed file and updated logo plot code
This commit is contained in:
parent
95f0e28fb2
commit
61f8dc57c9
2 changed files with 96 additions and 117 deletions
|
@ -1,38 +1,37 @@
|
|||
getwd()
|
||||
setwd("~/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts/Plotting")
|
||||
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/")
|
||||
getwd()
|
||||
|
||||
########################################################################
|
||||
# Installing and loading required packages #
|
||||
########################################################################
|
||||
|
||||
#source("../Header_TT.R")
|
||||
source("../Header_TT.R")
|
||||
|
||||
#source("barplot_colour_function.R")
|
||||
|
||||
#library(ggseqlogo)
|
||||
library(ggseqlogo)
|
||||
|
||||
########################################################################
|
||||
# Read file: call script for combining df for lig #
|
||||
########################################################################
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# msa file: output of generate_mut_sequences.py
|
||||
#############
|
||||
homedir = '~'
|
||||
indir = 'git/Data/pyrazinamide/output'
|
||||
in_filename = "gene_msa.txt"
|
||||
infile = paste0(homedir, '/', indir,'/', in_filename)
|
||||
print(infile)
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# combined dfs
|
||||
#############
|
||||
source("../combining_two_df.R")
|
||||
|
||||
#---------------------- PAY ATTENTION
|
||||
# the above changes the working dir
|
||||
#[1] "/home/tanu/git/LSHTM_Y1_PNCA/mcsm_analysis/pyrazinamide/Scripts"
|
||||
#---------------------- PAY ATTENTION
|
||||
|
||||
#==========================
|
||||
# This will return:
|
||||
|
||||
#merged_df2 # 3092, 35
|
||||
#merged_df2_comp #3012, 35
|
||||
|
||||
#merged_df3 #335, 35
|
||||
#merged_df3_comp #293, 35
|
||||
#==========================
|
||||
|
||||
###########################
|
||||
# Data for Logo plots
|
||||
# you need big df i.e
|
||||
|
@ -69,10 +68,40 @@ table(my_df$position == my_df$Position)
|
|||
c1 = unique(my_df$Position) # 130
|
||||
nrow(my_df) # 3092
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#FIXME
|
||||
#!!! RESOLVE !!!
|
||||
# get freq count of positions and add to the df
|
||||
setDT(my_df)[, occurrence_sample := .N, by = .(id)]
|
||||
table(my_df$occurrence_sample)
|
||||
|
||||
|
||||
my_df2 = my_df %>%
|
||||
select(id, Mutationinformation, Wild_type, WildPos, position, Mutant_type, occurrence, occurrence_sample)
|
||||
|
||||
write.csv(my_df2, "my_df2.csv")
|
||||
|
||||
# extract freq_pos>1 since this will not add to much in the logo plot
|
||||
# pos 5 has one mutation but coming from atleast 5 samples?
|
||||
table(my_df$occurrence)
|
||||
foo = my_df[my_df$occurrence ==1,]
|
||||
|
||||
# uncomment as necessary
|
||||
my_data_snp = my_df #3092
|
||||
|
||||
#!!! RESOLVE
|
||||
# FIXME
|
||||
my_data_snp = my_df[my_df$occurrence!=1,] #3072, 36...3019
|
||||
|
||||
u = unique(my_data_snp$Position) #96
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
########################################################################
|
||||
# end of data extraction and cleaning for plots #
|
||||
########################################################################
|
||||
|
@ -94,79 +123,6 @@ u = unique(my_data_snp$Position) #96
|
|||
|
||||
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
|
||||
|
||||
|
||||
#############
|
||||
#PLOTS: Bar plot with aa properties
|
||||
#using gglogo
|
||||
#useful links: https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||
#############
|
||||
#following example
|
||||
require(ggplot2)
|
||||
require(reshape2)
|
||||
library(gglogo)
|
||||
library(ggrepel)
|
||||
#lmf <- melt(logodf, id.var='pos')
|
||||
foo = my_data_snp[, c("Position"
|
||||
, "Mutant_type"
|
||||
, "ratioDUET"
|
||||
, "OR"
|
||||
, "mut_prop_polarity"
|
||||
, "mut_prop_water") ]
|
||||
head(foo) #3019, 6
|
||||
|
||||
foo = foo[order(foo$Position),]
|
||||
head(foo)
|
||||
|
||||
|
||||
##############
|
||||
# ggseqlogo
|
||||
#https://stackoverflow.com/questions/1439513/creating-a-sequential-list-of-letters-with-r
|
||||
##############
|
||||
|
||||
# Some sample data for aa
|
||||
data(ggseqlogo_sample)
|
||||
|
||||
seqs_aa = seqs_aa$AKT1
|
||||
class(seqs_aa); str(seqs_aa)
|
||||
|
||||
# seq logo with custom x-axis
|
||||
ggseqlogo( seqs_aa$AKT1, seq_type='aa'
|
||||
, col_scheme = "hydrophobicity")+
|
||||
theme(legend.position = "top")
|
||||
#theme(axis.text.x = element_blank()) +
|
||||
theme_logo()#+
|
||||
#scale_x_continuous(breaks= 1:15
|
||||
#, expand = c(0.105, 0)
|
||||
# , labels = LETTERS[1:15]
|
||||
|
||||
|
||||
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
snps = read.csv(#'../Data/snps_msa2.txt'
|
||||
# '../Data/snps_msa.txt'
|
||||
'../Data/gene_msa.txt'
|
||||
, stringsAsFactors = F
|
||||
, header = F) #3072,
|
||||
class(snps)
|
||||
snps2 = as.character(snps[1:nrow(snps),])
|
||||
|
||||
class(snps2); str(snps2)
|
||||
ggseqlogo(snps2) # COMPLAINS about length of each sequence if snps_msa2 is used
|
||||
|
||||
#### NOT WORKING
|
||||
|
||||
#source("http://bioconductor.org/biocLite.R")
|
||||
#install.packages("BiocManager")
|
||||
#library(BiocManager)
|
||||
BiocManager::install("Logolas")
|
||||
#biocLite("Logolas")
|
||||
library("Logolas")
|
||||
#https://kkdey.github.io/Logolas-pages/workflow.html
|
||||
|
||||
# partially working
|
||||
|
||||
#==============
|
||||
# matrix for mutant type
|
||||
# frequency of mutant type by position
|
||||
|
@ -188,7 +144,7 @@ colnames(tab_mt) #pos
|
|||
# Plot 1: mutant logo
|
||||
#**********************
|
||||
my_ymax = max(my_data_snp$occurrence); my_ymax
|
||||
my_ylim = c(0,my_ymax)
|
||||
my_ylim = c(0,my_ymax) # very important
|
||||
|
||||
# axis sizes
|
||||
# common: text and label
|
||||
|
@ -213,38 +169,38 @@ chemistry = data.frame(
|
|||
stringsAsFactors = F
|
||||
)
|
||||
|
||||
# uncomment as necessary
|
||||
my_type = "EDLogo"
|
||||
my_type = "Logo"
|
||||
|
||||
# EDlogo
|
||||
logomaker(tab_mt
|
||||
, type = "EDLogo"
|
||||
# , type = "Logo"
|
||||
, type = my_type
|
||||
, return_heights = T
|
||||
, color_type = "per_row"
|
||||
, colors = chemistry$col
|
||||
# , color_type = "per_row"
|
||||
# , colors = chemistry$col
|
||||
# , method = 'custom'
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
|
||||
theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_xats , angle = 90)
|
||||
# , axis.text.y = element_text(size = my_yats , angle = 90)
|
||||
)
|
||||
, legend.text = element_text(size = my_lts )
|
||||
, axis.text.x = element_text(size = my_ats , angle = 90)
|
||||
, axis.text.y = element_text(size = my_ats , angle = 90))
|
||||
|
||||
p0 = logomaker(tab_mt
|
||||
, type = "EDLogo"
|
||||
, type = my_type
|
||||
, return_heights = T
|
||||
# , method = 'custom'
|
||||
, color_type = "per_row"
|
||||
, colors = chemistry$col
|
||||
# , seq_type = 'aa'
|
||||
# , col_scheme = "taylor"
|
||||
# , col_scheme = "chemistry2"
|
||||
) +
|
||||
#ylab('my custom height') +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
|
@ -256,23 +212,46 @@ p0
|
|||
# further customisation
|
||||
p1 = p0 + theme(legend.position = "bottom"
|
||||
, legend.title = element_blank()
|
||||
, legend.text = element_text(size = leg_size)
|
||||
, axis.text.x = element_text(size = x_size , angle = 90)
|
||||
, axis.text.y = element_text(size = y_size , angle = 90))
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_ats , angle = 90)
|
||||
, axis.text.y = element_text(size = my_ats , angle = 90))
|
||||
p1
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#############
|
||||
# msa file: output of generate_mut_sequences.py
|
||||
#############
|
||||
homedir = '~'
|
||||
indir = 'git/Data/pyrazinamide/output'
|
||||
in_filename = "gene_msa.txt"
|
||||
infile = paste0(homedir, '/', indir,'/', in_filename)
|
||||
print(infile)
|
||||
|
||||
#####
|
||||
##############
|
||||
# ggseqlogo: custom matrix of my data
|
||||
##############
|
||||
snps = read.csv(infile
|
||||
, stringsAsFactors = F
|
||||
, header = F) #3072,
|
||||
|
||||
class(snps); str(snps) # df and chr
|
||||
|
||||
logomaker(snps2, type = "EDLogo"
|
||||
, color_type = "per_symbol") +
|
||||
# turn to a character vector
|
||||
snps2 = as.character(snps[1:nrow(snps),])
|
||||
|
||||
class(snps2); str(snps2) #character, chr
|
||||
|
||||
# plot
|
||||
logomaker(snps2, type = my_type
|
||||
, color_type = "per_row") +
|
||||
theme(axis.text.x = element_blank()) +
|
||||
theme_logo()+
|
||||
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
|
||||
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
||||
, labels = colnames(tab_mt))+
|
||||
scale_y_continuous( breaks = 1:my_ymax
|
||||
scale_y_continuous( breaks = 0:5
|
||||
, limits = my_ylim)
|
||||
|
||||
|
|
@ -251,7 +251,7 @@ p2
|
|||
p3 = p2 +
|
||||
theme(legend.position = "bottom"
|
||||
, legend.text = element_text(size = my_lts)
|
||||
, axis.text.x = element_text(size = my_ats-
|
||||
, axis.text.x = element_text(size = my_ats
|
||||
, angle = 90)
|
||||
, axis.text.y = element_blank())
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue