diff --git a/meta_data_analysis/rd_df.py b/meta_data_analysis/rd_df.py new file mode 100755 index 0000000..96dbe6e --- /dev/null +++ b/meta_data_analysis/rd_df.py @@ -0,0 +1,137 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +''' +Created on Tue Aug 6 12:56:03 2019 + +@author: tanu +''' +#============================================================================= +# Task: Residue depth (rd) processing to generate a df with residue_depth(rd) +# values + +# FIXME +# Input: '.tsv' i.e residue depth txt file (output from .zip file manually +# downloaded from the website). +# This should be integrated into the pipeline + +# Output: .csv with 3 cols i.e position, rd_values & 3-letter wt aa code(caps) +#============================================================================= +#%% load packages +import sys, os +import pandas as pd +#import numpy as np +#============================================================================= +#%% specify input and curr dir +homedir = os.path.expanduser('~') + +# set working dir +os.getcwd() +os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis') +os.getcwd() +#============================================================================= +#%% variable assignment: input and output +drug = 'pyrazinamide' +gene = 'pncA' +gene_match = gene + '_p.' + +#========== +# data dir +#========== +#indir = 'git/Data/pyrazinamide/input/original' +datadir = homedir + '/' + 'git/Data' + +#======= +# input +#======= +#indir = 'git/Data/pyrazinamide/input/original' +indir = datadir + '/' + drug + '/' + 'output' +in_filename = '3pl1_rd.tsv' +infile = indir + '/' + in_filename +print('Input filename:', in_filename + , '\nInput path:', indir) + +#======= +# output +#======= +outdir = datadir + '/' + drug + '/' + 'output' +out_filename = gene.lower() + '_rd.csv' +outfile = outdir + '/' + out_filename +print('Output filename:', out_filename + , '\nOutput path:', outdir) + +print('======================================================================') +#%% end of variable assignment for input and output files +#======================================================================= +#%% Read input file +rd_data = pd.read_csv(infile, sep = '\t') +print('Reading input file:', infile + , '\nNo. of rows:', len(rd_data) + , '\nNo. of cols:', len(rd_data.columns)) + +print('Column names:', rd_data.columns) + +print('======================================================================') +#======================== +# creating position col +#======================== +# Extracting residue number from index and assigning +# the values to a column [position]. Then convert the position col to numeric. +rd_data['position'] = rd_data.index.str.extract('([0-9]+)').values + +# converting position to numeric +rd_data['position'] = pd.to_numeric(rd_data['position']) +rd_data['position'].dtype + +print('Extracted residue num from index and assigned as a column:' + , '\ncolumn name: position' + , '\ntotal no. of cols now:', len(rd_data.columns)) +print('======================================================================') + +#======================== +# Renaming amino-acid +# and all-atom cols +#======================== +print('Renaming columns:' + ,'\ncolname==> # chain:residue: wt_3letter_caps' + ,'\nYES... the column name *actually* contains a # ..!' + ,'\ncolname==> all-atom: rd_values') + +print('======================================================================') + +rd_data.rename(columns = {'# chain:residue':'wt_3letter_caps', 'all-atom':'rd_values'}, inplace = True) +print('Column names:', rd_data.columns) + +#======================== +# extracting df with the +# desired columns +#======================== +print('Extracting relevant columns for writing df as csv') + +rd_df = rd_data[['position','rd_values','wt_3letter_caps']] + +if len(rd_df) == len(rd_data): + print('PASS: extracted df has expected no. of rows' + ,'\nExtracted df dim:' + ,'\nNo. of rows:', len(rd_df) + ,'\nNo. of cols:', len(rd_df.columns)) +else: + print('FAIL: no. of rows mimatch' + ,'\nExpected no. of rows:', len(rd_data) + ,'\nGot no. of rows:', len(rd_df)) + +print('======================================================================') + +#%% write file +print('Writing file:' + , '\nFilename:', out_filename + , '\nPath:', outdir) + +rd_df.to_csv(outfile, header = True, index = False) + +print('======================================================================') +print('Finished writing:', out_filename + , '\nNo. of rows:', len(rd_df) + , '\nNo. of cols:', len(rd_df.columns)) + +#%% end of script +#=======================================================================