renamed files that combine dfs

This commit is contained in:
Tanushree Tunstall 2020-07-07 15:46:13 +01:00
parent a220288c5f
commit 5addb85851
5 changed files with 187 additions and 622 deletions

View file

@ -25,8 +25,7 @@ import pandas as pd
import numpy as np
#from varname import nameof
import argparse
from combining import combine_stability_dfs
from combining import detect_common_cols
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
@ -35,6 +34,10 @@ homedir = os.path.expanduser('~')
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# local imports
from combining_dfs import combine_dfs_with_checks
from combining_dfs import detect_common_cols
#=======================================================================
#%% command line args
#arg_parser = argparse.ArgumentParser()
@ -60,33 +63,33 @@ outdir = datadir + '/' + drug + '/' + 'output'
# input
#=======
#in_filename_linking = gene.lower() + '_linking_df.csv'
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
#in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_dssp = gene.lower() + '_dssp.csv'
in_filename_kd = gene.lower() + '_kd.csv'
#in_filename_rd = gene.lower() + '_rd.csv'
in_filename_rd = gene.lower() + '_rd.csv'
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
#infile_linking = outdir + '/' + in_filename_linking
#infile_mcsm = outdir + '/' + in_filename_mcsm
#infile_foldx = outdir + '/' + in_filename_foldx
infile_mcsm = outdir + '/' + in_filename_mcsm
infile_foldx = outdir + '/' + in_filename_foldx
infile_dssp = outdir + '/' + in_filename_dssp
infile_kd = outdir + '/' + in_filename_kd
#infile_rd = outdir + '/' + in_filename_rd
infile_rd = outdir + '/' + in_filename_rd
infile_snpinfo = indir + '/' + in_filename_snpinfo
infile_afor = outdir + '/' + in_filename_afor
infile_afor_kin = outdir + '/' + in_filename_afor_kin
print('\nInput path:', outdir
# , '\nInput filename1:', infile_mcsm
# , '\nInput filename2:', infile_foldx
, '\nInput filename2:', infile_dssp
, '\nInput filename2:', infile_kd
# , '\nInput filename2:', infile_rd
, '\nInput filename mcsm:', infile_mcsm
, '\nInput filename foldx:', infile_foldx
, '\nInput filename dssp:', infile_dssp
, '\nInput filename kd:', infile_kd
, '\nInput filename rd', infile_rd
, '\nInput filename snp info:', infile_snpinfo
, '\nInput filename af or:', infile_afor
, '\nInput filename afor kinship:', infile_afor_kin
@ -95,10 +98,10 @@ print('\nInput path:', outdir
#=======
# output
#=======
#out_filename_comb = gene.lower() + '_struct_params_TEST.csv'
#outfile_comb = outdir + '/' + out_filename_comb
#print('Output filename:', outfile_comb
# , '\n============================================================')
out_filename_comb = gene.lower() + '_all_params.csv'
outfile_comb = outdir + '/' + out_filename_comb
print('Output filename:', outfile_comb
, '\n============================================================')
o_join = 'outer'
l_join = 'left'
@ -111,6 +114,8 @@ i_join = 'inner'
#=======================================================================
# call function to detect common cols
# FIXME: do the OR combining in the end to iron out any problems
# Couldn't run the function combin
#=======================================================================
def main():
@ -133,99 +138,166 @@ def main():
# , '\nmerging column/s:', merging_cols, 'type:', type(merging_cols)
# , '\ndtypes in merging columns:', dssp_df[merging_cols].dtypes)
#combined_df1 = combine_stability_dfs(dssp_df, kd_df, my_join = o_join)
#combined_df1 = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
#print('Dimensions of combined df:', combined_df1.shape
# , '\nsneak peak:', combined_df1.head()
# , '\ndtypes in cols:\n', combined_df1.dtypes)
#=============================================================================
afor_df = pd.read_csv(infile_afor, sep = ',')
afor_df.columns = afor_df.columns.str.lower()
snpinfo_df = pd.read_csv(infile_snpinfo, sep = ',')
snpinfo_df.columns = snpinfo_df.columns.str.lower()
# print('Dimension df1:', afor_df.shape
# , '\nDimension df2:', snpinfo_df.shape
# , '\njoin type:', l_join
# , '\n=========================================================')
# detect common cols
merging_cols = detect_common_cols(afor_df, snpinfo_df)
#print('Length of common cols:', len(merging_cols)
# , '\nmerging column/s:', merging_cols, 'type:', type(merging_cols)
# , '\ndtypes in merging columns:', snpinfo_df[merging_cols].dtypes)
comb_afor_snpinfo = combine_stability_dfs(afor_df, snpinfo_df, my_join = l_join)
#print('Dimensions of combined df:', comb_afor_snpinfo.shape
# , '\nsneak peak:', comb_afor_snpinfo.head()
# , '\ndtypes in cols:\n', comb_afor_snpinfo.dtypes)
#=============================================================================
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
# detect common cols
merging_cols = detect_common_cols(comb_afor_snpinfo, afor_kin_df)
# comb2 = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
#print('Dimensions of combined df:', comb2.shape
# , '\nsneak peak:', comb2.head()
# , '\ndtypes in cols:\n', comb2.dtype)
if __name__ == '__main__':
main()
#if __name__ == '__main__':
# main()
#=======================================================================
#%% end of script
#hardocoded test
#hardcoded test
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
mcsm_df.columns = mcsm_df.columns.str.lower()
foldx_df = pd.read_csv(infile_foldx , sep = ',')
print('==================================='
, '\nFirst merge: mcsm + foldx'
, '\n===================================')
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = o_join)
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
mcsm_foldx_dfs = pd.merge(mcsm_df, foldx_df, on = merging_cols_m1, how = 'outer')
ncols_m1 = len(mcsm_foldx_dfs.columns)
print('==================================='
, '\nSecond merge: dssp + kd'
, '\n===================================')
dssp_df = pd.read_csv(infile_dssp, sep = ',')
kd_df = pd.read_csv(infile_kd, sep = ',')
rd_df = pd.read_csv(infile_rd, sep = ',')
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = o_join)
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
dssp_kd_dfs = pd.merge(dssp_df, kd_df, on = merging_cols_m2, how = 'outer')
print('==================================='
, '\nThird merge: dssp_kd_dfs + rd_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = o_join)
merging_cols_m3 = detect_common_cols(dssp_df, kd_df)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs, rd_df, on = merging_cols_m3, how = 'outer')
ncols_m3 = len(dssp_kd_rd_dfs.columns)
print('==================================='
, '\nFourth merge: First merge + Third merge'
, '\n===================================')
#combined_dfs = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = i_join)# gives wrong!
merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = 'inner')
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nnrows combined_df:', len(combined_df)
, '\ncols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual df merges')
#%% OR combining
afor_df = pd.read_csv(infile_afor, sep = ',')
snpinfo_df = pd.read_csv(infile_snpinfo, sep = ',')
afor_df.columns = afor_df.columns.str.lower()
if afor_df['mutation'].shape[0] == afor_df['mutation'].nunique():
print('No duplicate muts detected in afor_df')
else:
print('Dropping duplicate muts detected in afor_df')
afor_df = afor_df.drop_duplicates(subset = 'mutation', keep = 'first')
snpinfo_df_all = pd.read_csv(infile_snpinfo, sep = ',')
snpinfo_df = snpinfo_df_all[['mutation', 'mutationinformation']]
if snpinfo_df['mutation'].shape[0] == snpinfo_df['mutation'].nunique():
print('No duplicate muts detected in snpinfo_df')
else:
dups = snpinfo_df['mutation'].duplicated().sum()
print( dups, 'Duplicate muts detected in snpinfo_df'
, '\nDim:', snpinfo_df.shape)
print('Dropping duplicate muts')
snpinfo_df = snpinfo_df.drop_duplicates(subset = 'mutation', keep = 'first')
print('Dim:', snpinfo_df.shape)
print('==================================='
, '\nFifth merge: afor_df + snpinfo_df'
, '\n===================================')
merging_cols_m5 = detect_common_cols(afor_df, snpinfo_df)
afor_snpinfo_dfs = pd.merge(afor_df, snpinfo_df, on = merging_cols_m5, how = 'left')
#afor_df.shape
#snpinfo_df.shape
if len(afor_snpinfo_dfs) == afor_df.shape[0]:
print('PASS: succesfully combined with left join')
else:
sys.exit('FAIL: unsuccessful merge')
#%%
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
print('==================================='
, '\nSixth merge: afor_snpinfo_dfs + afor_kin_df'
, '\n===================================')
merging_cols = ['alt_allele',
'chr_num_allele',
'chromosome_number',
'gene_id',
'gene_number',
'mut_info',
'mut_region',
'mut_type',
'mutant_type',
'mutationinformation',
'position',
'ref_allele',
'wild_type']
merging_cols_m6 = detect_common_cols(afor_snpinfo_dfs, afor_kin_df)
print('doing thing')
print('Dim of df1:', afor_snpinfo_dfs.shape
, '\nDim of df2:', afor_kin_df.shape
, '\nno. of merging_cols:', len(merging_cols_m6))
ors_df = pd.merge(afor_snpinfo_dfs, afor_kin_df, on = merging_cols_m6, how = 'outer')
print('Dim of ors_df:', ors_df.shape)
#%%
print('==================================='
, '\nSeventh merge: combined_df + ors_df'
, '\n===================================')
merging_cols_m7 = detect_common_cols(combined_df, ors_df)
print('Dim of df1:', combined_df.shape
, '\nDim of df2:', ors_df.shape
, '\nno. of merging_cols:', len(merging_cols_m7))
print('checking mutations in the two dfs:'
, '\nmuts in df1 but NOT in df2:'
, combined_df['mutationinformation'].isin(ors_df['mutationinformation']).sum()
, 'muts in df2 but NOT in df1:'
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
#print('\nNo. of common muts:', np.intersect1d(combined_df['mutationinformation'], ors_df['mutationinformation']) )
#combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'outer') # FIXME
combined_df_all = pd.merge(combined_df, ors_df, on = merging_cols_m7, how = 'left')
outdf_expected_rows = len(combined_df)
outdf_expected_cols = len(combined_df.columns) + len(ors_df.columns) - len(merging_cols_m7)
print('\nDim of combined_df_all:', combined_df_all.shape)
if combined_df_all.shape[1] == outdf_expected_cols:
print('combined_df has expected no. of cols')
if combined_df_all.shape[0] == outdf_expected_rows:
print('combined_df has expected no. of rows')
else:
print('WARNING: nrows discrepancy noted'
, '\nFIX IT')
comb_afor_snpinfo = pd.merge(afor_df, snpinfo_df, on = 'mutation', how = 'inner')
comb2 = pd.merge(comb_afor_snpinfo, afor_kin_df, on = merging_cols, how = i_join)
comb3 = comb2.drop_duplicates(subset=merging_cols, keep = 'first')
common = np.intersect1d(comb_afor_snpinfo['mutationinformation'], afor_kin_df['mutationinformation'])
print('comb3 dim:', comb3.shape
, '\ncomb2 dim:', comb2.shape
, '\ndim of df1:', comb_afor_snpinfo.shape
, '\ndim of df2:', afor_kin_df.shape
, '\ncommon vals:', len(common))
print('expected:\n')
bar = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
print('XXXXXX\n:', bar.shape)
#bar = np.intersect1d(comb_afor_snpinfo[merging_cols[0]], afor_kin_df[merging_cols[0]])
#print('common values:',len(bar))
#comb2 = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
print ('thing finished')
#%% write csv
combined_df_all.to_csv(outfile_comb, index = False)