adapted rd_df script to make it take command line args and define function
This commit is contained in:
parent
811027e34d
commit
569b7c6c7f
1 changed files with 175 additions and 0 deletions
175
scripts/rd_df.py
Executable file
175
scripts/rd_df.py
Executable file
|
@ -0,0 +1,175 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
'''
|
||||||
|
Created on Tue Aug 6 12:56:03 2019
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
'''
|
||||||
|
#=============================================================================
|
||||||
|
# Task: Residue depth (rd) processing to generate a df with residue_depth(rd)
|
||||||
|
# values
|
||||||
|
|
||||||
|
# FIXME
|
||||||
|
# Input: '.tsv' i.e residue depth txt file (output from .zip file manually
|
||||||
|
# downloaded from the website).
|
||||||
|
# This should be integrated into the pipeline
|
||||||
|
|
||||||
|
# Output: .csv with 3 cols i.e position, rd_values & 3-letter wt aa code(caps)
|
||||||
|
#=============================================================================
|
||||||
|
#%% load packages
|
||||||
|
import sys, os
|
||||||
|
import argparse
|
||||||
|
import pandas as pd
|
||||||
|
#=============================================================================
|
||||||
|
#%% specify input and curr dir
|
||||||
|
homedir = os.path.expanduser('~')
|
||||||
|
|
||||||
|
# set working dir
|
||||||
|
os.getcwd()
|
||||||
|
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||||
|
os.getcwd()
|
||||||
|
#=======================================================================
|
||||||
|
#%% command line args
|
||||||
|
arg_parser = argparse.ArgumentParser()
|
||||||
|
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
|
||||||
|
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
|
||||||
|
arg_parser.add_argument('-d', '--drug', help='drug name', default = 'DRUGNAME')
|
||||||
|
arg_parser.add_argument('-g', '--gene', help='gene name', default = 'geneName')
|
||||||
|
args = arg_parser.parse_args()
|
||||||
|
#=======================================================================
|
||||||
|
#%% variable assignment: input and output
|
||||||
|
#drug = 'pyrazinamide'
|
||||||
|
#gene = 'pncA'
|
||||||
|
drug = args.drug
|
||||||
|
gene = args.gene
|
||||||
|
gene_match = gene + '_p.'
|
||||||
|
|
||||||
|
#==========
|
||||||
|
# data dir
|
||||||
|
#==========
|
||||||
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
|
||||||
|
#=======
|
||||||
|
# input
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
in_filename = '3pl1_rd.tsv'
|
||||||
|
infile = outdir + '/' + in_filename
|
||||||
|
print('Input filename:', in_filename
|
||||||
|
, '\nInput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
#=======
|
||||||
|
# output
|
||||||
|
#=======
|
||||||
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
out_filename = gene.lower() + '_rd.csv'
|
||||||
|
outfile = outdir + '/' + out_filename
|
||||||
|
print('Output filename:', out_filename
|
||||||
|
, '\nOutput path:', outdir
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#%% end of variable assignment for input and output files
|
||||||
|
#=======================================================================
|
||||||
|
#%% rd values from <gene>_rd.tsv values
|
||||||
|
def rd_to_csv(inputtsv, outputrdcsv):
|
||||||
|
"""
|
||||||
|
Calculate kd (hydropathy values) from input fasta file
|
||||||
|
|
||||||
|
@param inputtsv: tsv file downloaded from {INSERT LINK}
|
||||||
|
@type inputtsv: string
|
||||||
|
|
||||||
|
@param outputrdsv: csv file with rd values
|
||||||
|
@type outfile: string
|
||||||
|
|
||||||
|
@return: writes df of kd values as csv
|
||||||
|
@type: .csv
|
||||||
|
"""
|
||||||
|
#========================
|
||||||
|
# read downloaded tsv file
|
||||||
|
#========================
|
||||||
|
#%% Read input file
|
||||||
|
rd_data = pd.read_csv(inputtsv, sep = '\t')
|
||||||
|
print('Reading input file:', inputtsv
|
||||||
|
, '\nNo. of rows:', len(rd_data)
|
||||||
|
, '\nNo. of cols:', len(rd_data.columns))
|
||||||
|
|
||||||
|
print('Column names:', rd_data.columns
|
||||||
|
, '\n===============================================================')
|
||||||
|
#========================
|
||||||
|
# creating position col
|
||||||
|
#========================
|
||||||
|
# Extracting residue number from index and assigning
|
||||||
|
# the values to a column [position]. Then convert the position col to numeric.
|
||||||
|
rd_data['position'] = rd_data.index.str.extract('([0-9]+)').values
|
||||||
|
|
||||||
|
# converting position to numeric
|
||||||
|
rd_data['position'] = pd.to_numeric(rd_data['position'])
|
||||||
|
rd_data['position'].dtype
|
||||||
|
|
||||||
|
print('Extracted residue num from index and assigned as a column:'
|
||||||
|
, '\ncolumn name: position'
|
||||||
|
, '\ntotal no. of cols now:', len(rd_data.columns)
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
#========================
|
||||||
|
# Renaming amino-acid
|
||||||
|
# and all-atom cols
|
||||||
|
#========================
|
||||||
|
print('Renaming columns:'
|
||||||
|
, '\ncolname==> # chain:residue: wt_3letter_caps'
|
||||||
|
, '\nYES... the column name *actually* contains a # ..!'
|
||||||
|
, '\ncolname==> all-atom: rd_values'
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
rd_data.rename(columns = {'# chain:residue':'wt_3letter_caps', 'all-atom':'rd_values'}, inplace = True)
|
||||||
|
print('Column names:', rd_data.columns)
|
||||||
|
|
||||||
|
#========================
|
||||||
|
# extracting df with the
|
||||||
|
# desired columns
|
||||||
|
#========================
|
||||||
|
print('Extracting relevant columns for writing df as csv')
|
||||||
|
|
||||||
|
rd_df = rd_data[['position','rd_values','wt_3letter_caps']]
|
||||||
|
|
||||||
|
if len(rd_df) == len(rd_data):
|
||||||
|
print('PASS: extracted df has expected no. of rows'
|
||||||
|
,'\nExtracted df dim:'
|
||||||
|
,'\nNo. of rows:', len(rd_df)
|
||||||
|
,'\nNo. of cols:', len(rd_df.columns))
|
||||||
|
else:
|
||||||
|
print('FAIL: no. of rows mimatch'
|
||||||
|
, '\nExpected no. of rows:', len(rd_data)
|
||||||
|
, '\nGot no. of rows:', len(rd_df)
|
||||||
|
, '\n=====================================================')
|
||||||
|
#===============
|
||||||
|
# writing file
|
||||||
|
#===============
|
||||||
|
print('Writing file:'
|
||||||
|
, '\nFilename:', outputrdcsv
|
||||||
|
# , '\nPath:', outdir
|
||||||
|
# , '\nExpected no. of rows:', len(rd_df)
|
||||||
|
# , '\nExpected no. of cols:', len(rd_df.columns)
|
||||||
|
, '\n=========================================================')
|
||||||
|
|
||||||
|
rd_df.to_csv(outputrdcsv, header = True, index = False)
|
||||||
|
|
||||||
|
#%% end of function
|
||||||
|
#=======================================================================
|
||||||
|
#%% call function
|
||||||
|
#rd_to_csv(infile, outfile)
|
||||||
|
#=======================================================================
|
||||||
|
def main():
|
||||||
|
print('Running hydropathy calcs', in_filename, 'output csv:', out_filename)
|
||||||
|
rd_to_csv(infile, outfile)
|
||||||
|
print('Finished Writing file:'
|
||||||
|
, '\nFilename:', outfile
|
||||||
|
, '\nPath:', outdir
|
||||||
|
## , '\nNo. of rows:', ''
|
||||||
|
## , '\nNo. of cols:', ''
|
||||||
|
, '\n=============================================================')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
#%% end of script
|
||||||
|
#=======================================================================
|
Loading…
Add table
Add a link
Reference in a new issue