rectified mcsm_mean_stability to avereage on raw values and then scale

This commit is contained in:
Tanushree Tunstall 2020-08-24 13:04:25 +01:00
parent d76345c3de
commit 54f9fd073b
2 changed files with 94 additions and 59 deletions

View file

@ -6,41 +6,29 @@ getwd()
# TASK: # TASK:
######################################################### #########################################################
source("Header_TT.R") #source("Header_TT.R")
require(data.table) #require(data.table)
require(dplyr) #require(dplyr)
source("plotting_data.R") source("plotting_data.R")
# should return # should return
#my_df #my_df
#my_df_u #my_df_u
#dup_muts #dup_muts
# cmd parse arguments
#require('getopt', quietly = TRUE)
#========================================================
#======================================================== #========================================================
# Read file: call script for combining df for PS # Read file: call script for combining df for PS
#source("../combining_two_df.R") #source("../combining_two_df.R")
#======================================================== #========================================================
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#============= # plotting_data.R imports all the dir names, etc
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#======
# input
#======
#in_filename = "mcsm_complex1_normalised.csv"
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat(paste0("Input file 1:", infile_params) )
#======= #=======
# output # output
@ -60,61 +48,108 @@ rm(my_df)
########################### ###########################
# Data for bfactor figure # Data for bfactor figure
# PS average # PS (duet) average
# Lig average # Ligand affinity average
########################### ###########################
head(df$position); head(df$mutationinformation) head(df$position); head(df$mutationinformation)
head(df$duet_scaled) head(df$duet_stability_change)
# order data frame # order data frame
#df = df[order(df$position),] #already done #df = df[order(df$position),] #already done
#head(df$position); head(df$mutationinformation)
head(df$position); head(df$mutationinformation) #head(df$duet_stability_change)
head(df$duet_scaled)
#*********** #***********
# PS: average by position # PS(duet): average by position and then scale b/w -1 and 1
# column to average: duet_stability_change (NOT scaled!)
#*********** #***********
mean_duet_by_position <- df %>% mean_duet_by_position <- df %>%
group_by(position) %>% group_by(position) %>%
summarize(averaged.duet = mean(duet_scaled)) summarize(averaged_duet = mean(duet_stability_change))
# scale b/w -1 and 1
duet_min = min(mean_duet_by_position['averaged_duet'])
duet_max = max(mean_duet_by_position['averaged_duet'])
# scale the averaged_duet values
mean_duet_by_position['averaged_duet_scaled'] = lapply(mean_duet_by_position['averaged_duet']
, function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
cat(paste0('Average duet scores:\n', head(mean_duet_by_position['averaged_duet'])
, '\n---------------------------------------------------------------'
, '\nScaled duet scores:\n', head(mean_duet_by_position['averaged_duet_scaled'])))
# sanity checks
l_bound_duet = min(mean_duet_by_position['averaged_duet_scaled'])
u_bound_duet = max(mean_duet_by_position['averaged_duet_scaled'])
if ( (l_bound_duet == -1) && (u_bound_duet == 1) ){
cat(paste0("PASS: duet scores averaged by position and then scaled"
, "\nmin averaged duet: ", l_bound_duet
, "\nmax averaged duet: ", u_bound_duet))
}else{
cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
, "\nmin averaged duet: ", l_bound_duet
, "\nmax averaged duet: ", u_bound_duet))
quit()
}
#*********** #***********
# Lig: average by position # Lig: average by position and then scale b/w -1 and 1
# column: ligand_affinity_change (NOT scaled!)
#*********** #***********
mean_affinity_by_position <- df %>% mean_affinity_by_position <- df %>%
group_by(position) %>% group_by(position) %>%
summarize(averaged.affinity = mean(affinity_scaled)) summarize(averaged_affinity = mean(ligand_affinity_change))
# scale b/w -1 and 1
affinity_min = min(mean_affinity_by_position['averaged_affinity'])
affinity_max = max(mean_affinity_by_position['averaged_affinity'])
# scale the averaged_affinity values
mean_affinity_by_position['averaged_affinity_scaled'] = lapply(mean_affinity_by_position['averaged_affinity']
, function(x) ifelse(x < 0, x/abs(affinity_min), x/affinity_max))
cat(paste0('Average affinity scores:\n', head(mean_affinity_by_position['averaged_affinity'])
, '\n---------------------------------------------------------------'
, '\nScaled affinity scores:\n', head(mean_affinity_by_position['averaged_affinity_scaled'])))
# sanity checks
l_bound_affinity = min(mean_affinity_by_position['averaged_affinity_scaled'])
u_bound_affinity = max(mean_affinity_by_position['averaged_affinity_scaled'])
if ( (l_bound_affinity == -1) && (u_bound_affinity == 1) ){
cat(paste0("PASS: affinity scores averaged by position and then scaled"
, "\nmin averaged affintiy: ", l_bound_affinity
, "\nmax averaged affintiy: ", u_bound_affinity))
}else{
cat(paste0("FAIL: avergaed affinity scores could not be scaled b/w -1 and 1"
, "\nmin averaged affintiy: ", l_bound_affinity
, "\nmax averaged affintiy: ", u_bound_affinity))
quit()
}
#*********** #***********
# cbind:mean_duet_by_position and mean_affinity_by_position # merge: mean_duet_by_position and mean_affinity_by_position
#*********** #***********
common_cols = intersect(colnames(mean_duet_by_position), colnames(mean_affinity_by_position))
combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position )) if (dim(mean_duet_by_position) && dim(mean_affinity_by_position)){
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
combined_df = as.data.frame(merge(mean_duet_by_position
, mean_affinity_by_position
, by = common_cols
, all = T))
# sanity check cat(paste0("\nnrows combined_df:", nrow(combined_df)
# mean_PS_affinity_Bfactor , "\nnrows combined_df:", ncol(combined_df)))
}else{
colnames(combined) cat(paste0("FAIL: dim's mismatch, aborting cbind!"
, "\nnrows df1:", nrow(mean_duet_by_position)
colnames(combined) = c("position" , "\nnrows df2:", nrow(mean_affinity_by_position)))
, "average_duet_scaled" quit()
, "position2" }
, "average_affinity_scaled")
colnames(combined)
identical(combined$position, combined$position2)
n = which(colnames(combined) == "position2"); n
combined_df = combined[,-n]
max(combined_df$average_duet_scaled) ; min(combined_df$average_duet_scaled)
max(combined_df$average_affinity_scaled) ; min(combined_df$average_affinity_scaled)
head(combined_df$position); tail(combined_df$position)
#%%============================================================ #%%============================================================
# output # output
write.csv(combined_df, outfile_mean_stability write.csv(combined_df, outfile_mean_stability

View file

@ -79,7 +79,7 @@ if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformati
upos = unique(my_df_u$position) upos = unique(my_df_u$position)
cat("Dim of clean df:"); cat(dim(my_df_u)) cat("Dim of clean df:"); cat(dim(my_df_u))
cat("\nNo. of unique mutational positions:"); cat(length(upos)) cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
######################################################################## ########################################################################
# end of data extraction and cleaning for plots # # end of data extraction and cleaning for plots #