minor updates to dir.R
This commit is contained in:
parent
7242b3516b
commit
4f60e93abb
4 changed files with 11 additions and 418 deletions
|
@ -238,9 +238,6 @@ combined_df[merging_cols_m4].apply(len) == len(combined_df)
|
||||||
#deepddg_df = pd.read_csv(infile_deepddg, sep = ' ')
|
#deepddg_df = pd.read_csv(infile_deepddg, sep = ' ')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%============================================================================
|
#%%============================================================================
|
||||||
# Output columns
|
# Output columns
|
||||||
|
|
||||||
|
@ -257,384 +254,4 @@ print('\nFinished writing file:'
|
||||||
, '\nNo. of cols:', combined_df.shape[1])
|
, '\nNo. of cols:', combined_df.shape[1])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
# OR merges: TEDIOUSSSS!!!!
|
|
||||||
#[ DELETE ]
|
|
||||||
del(mcsm_df, foldx_df, mcsm_foldx_dfs, dssp_kd_dfs, dssp_kd_rd_dfs,rd_df, kd_df, infile_mcsm, infile_foldx, infile_dssp, infile_kd)
|
|
||||||
del(merging_cols_m1, merging_cols_m2, merging_cols_m3, merging_cols_m4)
|
|
||||||
del(in_filename_dssp, in_filename_foldx, in_filename_kd, in_filename_mcsm, in_filename_rd)
|
|
||||||
#%%
|
|
||||||
print('==================================='
|
|
||||||
, '\nFifth merge: afor_df + afor_kin_df'
|
|
||||||
, '\n===================================')
|
|
||||||
|
|
||||||
# OR combining
|
|
||||||
afor_df = pd.read_csv(infile_afor, sep = ',')
|
|
||||||
#afor_df.columns = afor_df.columns.str.lower()
|
|
||||||
|
|
||||||
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
|
|
||||||
afor_kin_df.columns = afor_kin_df.columns.str.lower()
|
|
||||||
|
|
||||||
merging_cols_m5 = detect_common_cols(afor_df, afor_kin_df)
|
|
||||||
|
|
||||||
print('Dim of afor_df:', afor_df.shape
|
|
||||||
, '\nDim of afor_kin_df:', afor_kin_df.shape)
|
|
||||||
|
|
||||||
# finding if ALL afor_kin_df muts are present in afor_df
|
|
||||||
# i.e all kinship muts should be PRESENT in mycalcs_present
|
|
||||||
if len(afor_kin_df[afor_kin_df['mutation'].isin(afor_df['mutation'])]) == afor_kin_df.shape[0]:
|
|
||||||
print('PASS: ALL', len(afor_kin_df), 'or_kinship muts are present in my or list')
|
|
||||||
else:
|
|
||||||
nf_muts = len(afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])])
|
|
||||||
nf_muts_df = afor_kin_df[~afor_kin_df['mutation'].isin(afor_df['mutation'])]
|
|
||||||
print('FAIL:', nf_muts, 'muts present in afor_kin_df NOT present in my or list'
|
|
||||||
, '\nsee "nf_muts_df" created containing not found(nf) muts')
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
|
|
||||||
# Now checking how many afor_df muts are NOT present in afor_kin_df
|
|
||||||
common_muts = len(afor_df[afor_df['mutation'].isin(afor_kin_df['mutation'])])
|
|
||||||
extra_muts_myor = afor_kin_df.shape[0] - common_muts
|
|
||||||
|
|
||||||
print('=========================================='
|
|
||||||
, '\nmy or calcs has', common_muts, 'present in af_or_kin_df'
|
|
||||||
, '\n==========================================')
|
|
||||||
|
|
||||||
print('Expected cals for merging with outer_join...')
|
|
||||||
|
|
||||||
expected_rows = afor_df.shape[0] + extra_muts_myor
|
|
||||||
expected_cols = afor_df.shape[1] + afor_kin_df.shape[1] - len(merging_cols_m5)
|
|
||||||
|
|
||||||
|
|
||||||
afor_df['mutation']
|
|
||||||
afor_kin_df['mutation']
|
|
||||||
|
|
||||||
ors_df = pd.merge(afor_df, afor_kin_df, on = merging_cols_m5, how = o_join)
|
|
||||||
|
|
||||||
if ors_df.shape[0] == expected_rows and ors_df.shape[1] == expected_cols:
|
|
||||||
print('PASS but with duplicate muts: OR dfs successfully combined! PHEWWWW!'
|
|
||||||
, '\nDuplicate muts present but with different \'ref\' and \'alt\' alleles')
|
|
||||||
else:
|
|
||||||
print('FAIL: could not combine OR dfs'
|
|
||||||
, '\nCheck expected rows and cols calculation and join type')
|
|
||||||
|
|
||||||
print('Dim of merged ors_df:', ors_df.shape)
|
|
||||||
|
|
||||||
ors_df[merging_cols_m5].apply(len)
|
|
||||||
ors_df[merging_cols_m5].apply(len) == len(ors_df)
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
# formatting ors_df
|
|
||||||
ors_df.columns
|
|
||||||
|
|
||||||
# Dropping unncessary columns: already removed in ealier preprocessing
|
|
||||||
cols_to_drop = ['n_miss']
|
|
||||||
print('Dropping', len(cols_to_drop), 'columns:\n'
|
|
||||||
, cols_to_drop)
|
|
||||||
ors_df.drop(cols_to_drop, axis = 1, inplace = True)
|
|
||||||
|
|
||||||
print('Reordering', ors_df.shape[1], 'columns'
|
|
||||||
, '\n===============================================')
|
|
||||||
cols = ors_df.columns
|
|
||||||
|
|
||||||
column_order = ['mutation'
|
|
||||||
, 'mutationinformation'
|
|
||||||
, 'wild_type'
|
|
||||||
, 'position'
|
|
||||||
, 'mutant_type'
|
|
||||||
, 'ref_allele'
|
|
||||||
, 'alt_allele'
|
|
||||||
, 'mut_info_f1'
|
|
||||||
, 'mut_info_f2'
|
|
||||||
, 'mut_type'
|
|
||||||
, 'gene_id'
|
|
||||||
, 'gene_name'
|
|
||||||
, 'chromosome_number'
|
|
||||||
, 'af'
|
|
||||||
, 'af_kin'
|
|
||||||
, 'est_chisq'
|
|
||||||
, 'or_mychisq'
|
|
||||||
, 'or_fisher'
|
|
||||||
, 'or_logistic'
|
|
||||||
, 'or_kin'
|
|
||||||
, 'pval_chisq'
|
|
||||||
, 'pval_fisher'
|
|
||||||
, 'pval_logistic'
|
|
||||||
, 'pwald_kin'
|
|
||||||
, 'ci_low_fisher'
|
|
||||||
, 'ci_hi_fisher'
|
|
||||||
, 'ci_low_logistic'
|
|
||||||
, 'ci_hi_logistic'
|
|
||||||
, 'beta_logistic'
|
|
||||||
, 'beta_kin'
|
|
||||||
, 'se_logistic'
|
|
||||||
, 'se_kin'
|
|
||||||
, 'zval_logistic'
|
|
||||||
, 'logl_h1_kin'
|
|
||||||
, 'l_remle_kin']
|
|
||||||
|
|
||||||
if ( (len(column_order) == ors_df.shape[1]) and (DataFrame(column_order).isin(ors_df.columns).all().all())):
|
|
||||||
print('PASS: Column order generated for all:', len(column_order), 'columns'
|
|
||||||
, '\nColumn names match, safe to reorder columns'
|
|
||||||
, '\nApplying column order to df...' )
|
|
||||||
ors_df_ordered = ors_df[column_order]
|
|
||||||
else:
|
|
||||||
print('FAIL: Mismatch in no. of cols to reorder'
|
|
||||||
, '\nNo. of cols in df to reorder:', ors_df.shape[1]
|
|
||||||
, '\nNo. of cols order generated for:', len(column_order))
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
print('\nResult of Sixth merge:', ors_df_ordered.shape
|
|
||||||
, '\n===================================================================')
|
|
||||||
#%%
|
|
||||||
ors_df_ordered.shape
|
|
||||||
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
|
|
||||||
|
|
||||||
# populating 'nan' info
|
|
||||||
lookup_dict = dict()
|
|
||||||
for k, v in low_3letter_dict.items():
|
|
||||||
lookup_dict[k] = v['one_letter_code']
|
|
||||||
#print(lookup_dict)
|
|
||||||
|
|
||||||
wt = ors_df_ordered['mutation'].str.extract(wt_regex).squeeze()
|
|
||||||
#print(wt)
|
|
||||||
ors_df_ordered['wild_type'] = wt.map(lookup_dict)
|
|
||||||
|
|
||||||
ors_df_ordered['position'] = ors_df_ordered['mutation'].str.extract(pos_regex)
|
|
||||||
|
|
||||||
mt = ors_df_ordered['mutation'].str.extract(mut_regex).squeeze()
|
|
||||||
ors_df_ordered['mutant_type'] = mt.map(lookup_dict)
|
|
||||||
|
|
||||||
ors_df_ordered['mutationinformation'] = ors_df_ordered['wild_type'] + ors_df_ordered.position.map(str) + ors_df_ordered['mutant_type']
|
|
||||||
check = ors_df_ordered[['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']]
|
|
||||||
|
|
||||||
# populate mut_info_f1
|
|
||||||
ors_df_ordered['mut_info_f1'].isna().sum()
|
|
||||||
ors_df_ordered['mut_info_f1'] = ors_df_ordered['position'].astype(str) + ors_df_ordered['wild_type'] + '>' + ors_df_ordered['position'].astype(str) + ors_df_ordered['mutant_type']
|
|
||||||
ors_df_ordered['mut_info_f1'].isna().sum()
|
|
||||||
|
|
||||||
# populate mut_info_f2
|
|
||||||
ors_df_ordered['mut_info_f2'] = ors_df_ordered['mutation'].str.replace(gene_match.lower(), 'p.', regex = True)
|
|
||||||
|
|
||||||
# populate mut_type
|
|
||||||
ors_df_ordered['mut_type'].isna().sum()
|
|
||||||
#mut_type_word = ors_df_ordered['mut_type'].value_counts()
|
|
||||||
mut_type_word = 'missense' # FIXME, should be derived
|
|
||||||
ors_df_ordered['mut_type'].fillna(mut_type_word, inplace = True)
|
|
||||||
ors_df_ordered['mut_type'].isna().sum()
|
|
||||||
|
|
||||||
# populate gene_id
|
|
||||||
ors_df_ordered['gene_id'].isna().sum()
|
|
||||||
#gene_id_word = ors_df_ordered['gene_id'].value_counts()
|
|
||||||
gene_id_word = 'Rv2043c' # FIXME, should be derived
|
|
||||||
ors_df_ordered['gene_id'].fillna(gene_id_word, inplace = True)
|
|
||||||
ors_df_ordered['gene_id'].isna().sum()
|
|
||||||
|
|
||||||
# populate gene_name
|
|
||||||
ors_df_ordered['gene_name'].isna().sum()
|
|
||||||
ors_df_ordered['gene_name'].value_counts()
|
|
||||||
ors_df_ordered['gene_name'].fillna(gene, inplace = True)
|
|
||||||
ors_df_ordered['gene_name'].isna().sum()
|
|
||||||
|
|
||||||
# check numbers
|
|
||||||
ors_df_ordered['or_kin'].isna().sum()
|
|
||||||
# should be 0
|
|
||||||
ors_df_ordered['or_mychisq'].isna().sum()
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
print('==================================='
|
|
||||||
, '\nSixth merge: Fourth + Fifth merge'
|
|
||||||
, '\ncombined_df + ors_df_ordered'
|
|
||||||
, '\n===================================')
|
|
||||||
|
|
||||||
#combined_df_all = combine_dfs_with_checks(combined_df, ors_df_ordered, my_join = i_join)
|
|
||||||
merging_cols_m6 = detect_common_cols(combined_df, ors_df_ordered)
|
|
||||||
|
|
||||||
# dtype problems
|
|
||||||
if len(merging_cols_m6) > 1 and 'position'in merging_cols_m6:
|
|
||||||
print('Removing \'position\' from merging_cols_m6 to make dtypes consistent'
|
|
||||||
, '\norig length of merging_cols_m6:', len(merging_cols_m6))
|
|
||||||
merging_cols_m6.remove('position')
|
|
||||||
print('\nlength after removing:', len(merging_cols_m6))
|
|
||||||
|
|
||||||
print('Dim of df1:', combined_df.shape
|
|
||||||
, '\nDim of df2:', ors_df_ordered.shape
|
|
||||||
, '\nNo. of merging_cols:', len(merging_cols_m6))
|
|
||||||
|
|
||||||
print('Checking mutations in the two dfs:'
|
|
||||||
, '\nmuts in df1 present in df2:'
|
|
||||||
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
|
|
||||||
, '\nmuts in df2 present in df1:'
|
|
||||||
, ors_df_ordered['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
|
||||||
|
|
||||||
#----------
|
|
||||||
# merge 6
|
|
||||||
#----------
|
|
||||||
combined_df_all = pd.merge(combined_df, ors_df_ordered, on = merging_cols_m6, how = o_join)
|
|
||||||
combined_df_all.shape
|
|
||||||
|
|
||||||
# sanity check for merge 6
|
|
||||||
outdf_expected_rows = len(combined_df) + extra_muts_myor
|
|
||||||
unique_muts = len(combined_df)
|
|
||||||
outdf_expected_cols = len(combined_df.columns) + len(ors_df_ordered.columns) - len(merging_cols_m6)
|
|
||||||
|
|
||||||
if combined_df_all.shape[0] == outdf_expected_rows and combined_df_all.shape[1] == outdf_expected_cols and combined_df_all['mutationinformation'].nunique() == unique_muts:
|
|
||||||
print('PASS: Df dimension match'
|
|
||||||
, '\ncombined_df_all with join type:', o_join
|
|
||||||
, '\n', combined_df_all.shape
|
|
||||||
, '\n===============================================================')
|
|
||||||
else:
|
|
||||||
print('FAIL: Df dimension mismatch'
|
|
||||||
, 'Cannot generate expected dim. See details of merge performed'
|
|
||||||
, '\ndf1 dim:', combined_df.shape
|
|
||||||
, '\ndf2 dim:', ors_df_ordered.shape
|
|
||||||
, '\nGot:', combined_df_all.shape
|
|
||||||
, '\nmuts in df1 but NOT in df2:'
|
|
||||||
, combined_df['mutationinformation'].isin(ors_df_ordered['mutationinformation']).sum()
|
|
||||||
, '\nmuts in df2 but NOT in df1:'
|
|
||||||
, ors_df['mutationinformation'].isin(combined_df['mutationinformation']).sum())
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
# drop extra cols
|
|
||||||
all_cols = combined_df_all.columns
|
|
||||||
|
|
||||||
#pos_cols_check = combined_df_all[['position_x','position_y']]
|
|
||||||
c = combined_df_all[['position_x','position_y']].isna().sum()
|
|
||||||
pos_col_to_drop = c.index[c>0].to_list()
|
|
||||||
cols_to_drop = pos_col_to_drop + ['wild_type_kd']
|
|
||||||
|
|
||||||
print('Dropping', len(cols_to_drop), 'columns:\n', cols_to_drop)
|
|
||||||
combined_df_all.drop(cols_to_drop, axis = 1, inplace = True)
|
|
||||||
|
|
||||||
# rename position_x to position
|
|
||||||
pos_col_to_rename = c.index[c==0].to_list()
|
|
||||||
combined_df_all.shape
|
|
||||||
combined_df_all.rename(columns = { pos_col_to_rename[0]: 'position'}, inplace = True)
|
|
||||||
combined_df_all.shape
|
|
||||||
|
|
||||||
all_cols = combined_df_all.columns
|
|
||||||
|
|
||||||
#%% reorder cols to for convenience
|
|
||||||
first_cols = ['mutationinformation','mutation', 'wild_type', 'position', 'mutant_type']
|
|
||||||
last_cols = [col for col in combined_df_all.columns if col not in first_cols]
|
|
||||||
|
|
||||||
combined_df_all = combined_df_all[first_cols+last_cols]
|
|
||||||
|
|
||||||
#%% IMPORTANT: check if mutation related info is all populated after this merge
|
|
||||||
# select string colnames to ensure no NA exist there
|
|
||||||
string_cols = combined_df_all.columns[combined_df_all.applymap(lambda x: isinstance(x, str)).all(0)]
|
|
||||||
|
|
||||||
if (combined_df_all[string_cols].isna().sum(axis = 0)== 0).all():
|
|
||||||
print('PASS: All string cols are populated with no NAs')
|
|
||||||
else:
|
|
||||||
print('FAIL: NAs detected in string cols')
|
|
||||||
print(combined_df_all[string_cols].isna().sum(axis = 0))
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
# relevant mut cols
|
|
||||||
check_mut_cols = merging_cols_m5 + merging_cols_m6
|
|
||||||
|
|
||||||
count_na_mut_cols = combined_df_all[check_mut_cols].isna().sum().reset_index().rename(columns = {'index': 'col_name', 0: 'na_count'})
|
|
||||||
print(check_mut_cols)
|
|
||||||
|
|
||||||
c2 = combined_df_all[check_mut_cols].isna().sum()
|
|
||||||
missing_info_cols = c2.index[c2>0].to_list()
|
|
||||||
|
|
||||||
if c2.sum()>0:
|
|
||||||
#na_muts_n = combined_df_all['mutation'].isna().sum()
|
|
||||||
na_muts_n = combined_df_all[missing_info_cols].isna().sum()
|
|
||||||
print(na_muts_n.values[0], 'mutations have missing \'mutation\' info.'
|
|
||||||
, '\nFetching these from reference dict...')
|
|
||||||
else:
|
|
||||||
print('No missing \'mutation\' has been detected!')
|
|
||||||
|
|
||||||
lookup_dict = dict()
|
|
||||||
for k, v in oneletter_aa_dict.items():
|
|
||||||
lookup_dict[k] = v['three_letter_code_lower']
|
|
||||||
print(lookup_dict)
|
|
||||||
wt_3let = combined_df_all['wild_type'].map(lookup_dict)
|
|
||||||
#print(wt_3let)
|
|
||||||
pos = combined_df_all['position'].astype(str)
|
|
||||||
#print(pos)
|
|
||||||
mt_3let = combined_df_all['mutant_type'].map(lookup_dict)
|
|
||||||
#print(mt_3let)
|
|
||||||
# override the 'mutation' column
|
|
||||||
combined_df_all['mutation'] = 'pnca_p.' + wt_3let + pos + mt_3let
|
|
||||||
print(combined_df_all['mutation'])
|
|
||||||
|
|
||||||
# check again
|
|
||||||
if combined_df_all[missing_info_cols].isna().sum().all() == 0:
|
|
||||||
print('PASS: No mutations have missing \'mutation\' info.')
|
|
||||||
else:
|
|
||||||
print('FAIL:', combined_df_all[missing_info_cols].isna().sum().values[0]
|
|
||||||
, '\nmutations have missing info STILL...')
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
#%% check
|
|
||||||
foo = combined_df_all.drop_duplicates('mutationinformation')
|
|
||||||
foo2 = combined_df_all.drop_duplicates('mutation')
|
|
||||||
if foo.equals(foo2):
|
|
||||||
print('PASS: Dropping mutation or mutatationinformation has the same effect\n')
|
|
||||||
else:
|
|
||||||
print('FAIL: Still problems in merged data')
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
output_cols = combined_df_all.columns
|
|
||||||
|
|
||||||
#%% IMPORTANT result info
|
|
||||||
if combined_df_all['or_mychisq'].isna().sum() == len(combined_df) - len(afor_df):
|
|
||||||
print('PASS: No. of NA in or_mychisq matches expected length'
|
|
||||||
, '\nNo. of with NA in or_mychisq:', combined_df_all['or_mychisq'].isna().sum()
|
|
||||||
, '\nNo. of NA in or_kin:', combined_df_all['or_kin'].isna().sum())
|
|
||||||
else:
|
|
||||||
print('FAIL: No. of NA in or_mychisq does not match expected length')
|
|
||||||
|
|
||||||
|
|
||||||
if combined_df_all.shape[0] == outdf_expected_rows:
|
|
||||||
print('\nINFORMARIONAL ONLY: combined_df_all has duplicate muts present but with unique ref and alt allele'
|
|
||||||
, '\n=============================================================')
|
|
||||||
else:
|
|
||||||
print('combined_df_all has no duplicate muts present'
|
|
||||||
,'\n===============================================================')
|
|
||||||
|
|
||||||
print('\nDim of combined_data:', combined_df_all.shape
|
|
||||||
, '\nNo. of unique mutations:', combined_df_all['mutationinformation'].nunique())
|
|
||||||
|
|
||||||
|
|
||||||
#%%============================================================================
|
|
||||||
# write csv
|
|
||||||
print('Writing file: combined output of all params needed for plotting and ML')
|
|
||||||
combined_df_all.to_csv(outfile_comb, index = False)
|
|
||||||
print('\nFinished writing file:'
|
|
||||||
, '\nNo. of rows:', combined_df_all.shape[0]
|
|
||||||
, '\nNo. of cols:', combined_df_all.shape[1])
|
|
||||||
#=======================================================================
|
|
||||||
#%% incase you FIX the the function: combine_dfs_with_checks
|
|
||||||
#def main():
|
|
||||||
|
|
||||||
# print('Reading input files:')
|
|
||||||
#mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
|
|
||||||
#mcsm_df.columns = mcsm_df.columns.str.lower()
|
|
||||||
|
|
||||||
#foldx_df = pd.read_csv(infile_foldx , sep = ',')
|
|
||||||
|
|
||||||
#dssp_df = pd.read_csv(infile_dssp, sep = ',')
|
|
||||||
#dssp_df.columns = dssp_df.columns.str.lower()
|
|
||||||
|
|
||||||
#kd_df = pd.read_csv(infile_kd, sep = ',')
|
|
||||||
#kd_df.columns = kd_df.columns.str.lower()
|
|
||||||
|
|
||||||
#rd_df = pd.read_csv(infile_kd, sep = ',')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#if __name__ == '__main__':
|
|
||||||
# main()
|
|
||||||
#=======================================================================
|
|
||||||
#%% end of script
|
#%% end of script
|
||||||
|
|
|
@ -156,34 +156,7 @@ foo = select(df, mutationinformation
|
||||||
svg(plot_pos_count_duet)
|
svg(plot_pos_count_duet)
|
||||||
print(paste0("plot filename:", plot_pos_count_duet))
|
print(paste0("plot filename:", plot_pos_count_duet))
|
||||||
|
|
||||||
my_ats = 25 # axis text size
|
source("dirs.R")
|
||||||
my_als = 22 # axis label size
|
|
||||||
|
|
||||||
# to make x axis display all positions
|
|
||||||
# not sure if to use with sort or directly
|
|
||||||
my_x = sort(unique(snpsBYpos_df$snpsBYpos))
|
|
||||||
|
|
||||||
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
|
|
||||||
OutPlot_pos_count = g + geom_bar(aes (alpha = 0.5)
|
|
||||||
, show.legend = FALSE) +
|
|
||||||
scale_x_continuous(breaks = unique(snpsBYpos_df$snpsBYpos)) +
|
|
||||||
#scale_x_continuous(breaks = my_x) +
|
|
||||||
geom_label(stat = "count", aes(label = ..count..)
|
|
||||||
, color = "black"
|
|
||||||
, size = 10) +
|
|
||||||
theme(axis.text.x = element_text(size = my_ats
|
|
||||||
, angle = 0)
|
|
||||||
, axis.text.y = element_text(size = my_ats
|
|
||||||
, angle = 0
|
|
||||||
, hjust = 1)
|
|
||||||
, axis.title.x = element_text(size = my_als)
|
|
||||||
, axis.title.y = element_text(size = my_als)
|
|
||||||
, plot.title = element_blank()) +
|
|
||||||
|
|
||||||
labs(x = "Number of nsSNPs"
|
|
||||||
, y = "Number of Sites")
|
|
||||||
|
|
||||||
print(OutPlot_pos_count)
|
|
||||||
dev.off()
|
dev.off()
|
||||||
########################################################################
|
########################################################################
|
||||||
# end of PS barplots
|
# end of PS barplots
|
||||||
|
|
|
@ -12,10 +12,10 @@ import_dirs <- function(drug, gene) {
|
||||||
#=============
|
#=============
|
||||||
# directories and variables
|
# directories and variables
|
||||||
#=============
|
#=============
|
||||||
datadir <<- paste0("~/git/Data")
|
datadir <<- paste0("~/git/Data/")
|
||||||
indir <<- paste0(datadir, "/", drug, "/input")
|
indir <<- paste0(datadir, drug, "/input")
|
||||||
outdir <<- paste0("~/git/Data", "/", drug, "/output")
|
outdir <<- paste0("~/git/Data/", drug, "/output")
|
||||||
plotdir <<- paste0("~/git/Data", "/", drug, "/output/plots")
|
plotdir <<- paste0("~/git/Data/", drug, "/output/plots")
|
||||||
|
|
||||||
dr_muts_col <<- paste0('dr_mutations_', drug)
|
dr_muts_col <<- paste0('dr_mutations_', drug)
|
||||||
other_muts_col <<- paste0('other_mutations_', drug)
|
other_muts_col <<- paste0('other_mutations_', drug)
|
||||||
|
|
|
@ -15,8 +15,6 @@ library(ggplot2)
|
||||||
library(data.table)
|
library(data.table)
|
||||||
library(dplyr)
|
library(dplyr)
|
||||||
require("getopt", quietly = TRUE) #cmd parse arguments
|
require("getopt", quietly = TRUE) #cmd parse arguments
|
||||||
source("dirs.R")
|
|
||||||
|
|
||||||
#========================================================
|
#========================================================
|
||||||
# command line args
|
# command line args
|
||||||
spec = matrix(c(
|
spec = matrix(c(
|
||||||
|
@ -37,8 +35,13 @@ gene = "gid"
|
||||||
if(is.null(drug)|is.null(gene)) {
|
if(is.null(drug)|is.null(gene)) {
|
||||||
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
||||||
}
|
}
|
||||||
|
|
||||||
#========================================================
|
#========================================================
|
||||||
|
# Load functions
|
||||||
|
# import dir structure
|
||||||
|
source("dirs.R")
|
||||||
|
import_dirs(drug, gene)
|
||||||
|
#=======================================================
|
||||||
|
|
||||||
#======
|
#======
|
||||||
# input
|
# input
|
||||||
#======
|
#======
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue