graphs for PS lineage dist for all and dr muts

This commit is contained in:
Tanushree Tunstall 2020-01-22 10:12:09 +00:00
parent 3c20be5615
commit 4de4549430
4 changed files with 93 additions and 567 deletions

View file

@ -1,5 +1,5 @@
getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") # thinkpad
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting")
getwd()
########################################################################
@ -24,11 +24,11 @@ source("../combining_two_df.R")
#==========================
# This will return:
# df with NA:
# df with NA for pyrazinamide:
# merged_df2
# merged_df3
# df without NA:
# df without NA for pyrazinamide:
# merged_df2_comp
# merged_df3_comp
#===========================
@ -38,14 +38,17 @@ source("../combining_two_df.R")
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# uncomment as necessary
#<<<<<<<<<<<<<<<<<<<<<<<<<
#!!!!!!!!!!!!!!!!!!!!!!!
# REASSIGNMENT
my_df = merged_df2
#my_df = merged_df2_comp
#<<<<<<<<<<<<<<<<<<<<<<<<<
#!!!!!!!!!!!!!!!!!!!!!!!
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
@ -59,12 +62,39 @@ is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info)
table(my_df$mutation_info); str(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Data for plot: assign as
# necessary
#===========================
# uncomment as necessary
#!!!!!!!!!!!!!!!!!!!!!!!
# REASSIGNMENT
#==================
# data for ALL muts
#==================
plot_df = my_df
my_plot_name = 'lineage_dist_PS.svg'
#my_plot_name = 'lineage_dist_PS_comp.svg'
#=======================
# data for dr_muts ONLY
#=======================
#plot_df = my_df_dr
#my_plot_name = 'lineage_dist_dr_PS.svg'
#my_plot_name = 'lineage_dist_dr_PS_comp.svg'
#!!!!!!!!!!!!!!!!!!!!!!!
#==========================
# Plot: Lineage Distribution
# x = mcsm_values, y = dist
@ -74,6 +104,7 @@ table(my_df$mutation_info)
#===================
# Data for plots
#===================
table(plot_df$lineage); str(plot_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
@ -82,34 +113,29 @@ sel_lineages = c("lineage1"
, "lineage4")
# uncomment as necessary
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
df_lin = subset(plot_df, subset = lineage %in% sel_lineages )
# refactor
df_lin$lineage = factor(df_lin$lineage)
table(df_lin$lineage) #{RESULT: No of samples within lineage}
#lineage1 lineage2 lineage3 lineage4
#104 1293 264 1311
# when merged_df2_comp is used
#lineage1 lineage2 lineage3 lineage4
#99 1275 263 1255
length(unique(df_lin$Mutationinformation))
#{Result: No. of unique mutations the 4 lineages contribute to}
# sanity checks
r1 = 2:5 # when merged_df2 used: because there is missing lineages
if(sum(table(my_df$lineage)[r1]) == nrow(df_lin)) {
if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) {
print ("sanity check passed: numbers match")
} else{
print("Error!: check your numbers")
}
#<<<<<<<<<<<<<<<<<<<<<<<<<
#!!!!!!!!!!!!!!!!!!!!!!!!!
# REASSIGNMENT
df <- df_lin
#<<<<<<<<<<<<<<<<<<<<<<<<<
#!!!!!!!!!!!!!!!!!!!!!!!!!
rm(df_lin)
@ -117,8 +143,8 @@ rm(df_lin)
# generate distribution plot of lineages
#******************
# basic: could improve this!
library(plotly)
library(ggridges)
#library(plotly)
#library(ggridges)
g <- ggplot(df, aes(x = ratioDUET)) +
geom_density(aes(fill = DUET_outcome)
@ -129,64 +155,68 @@ g <- ggplot(df, aes(x = ratioDUET)) +
ggplotly(g)
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
fooNames=c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
names(fooNames)=c('lineage1', 'lineage2', 'lineage3', 'lineage4')
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4')
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4')
# set output dir for plots
getwd()
setwd("~/git/Data/pyrazinamide/output/plots")
getwd()
svg('lineage_dist_PS.svg')
# check plot name
my_plot_name
printFile = ggplot( df, aes(x = ratioDUET
, y = DUET_outcome) )+
# output svg
svg(my_plot_name)
printFile = ggplot(df, aes(x = ratioDUET
, y = DUET_outcome))+
#printFile=geom_density_ridges_gradient(
geom_density_ridges_gradient( aes(fill = ..x..)
geom_density_ridges_gradient(aes(fill = ..x..)
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage
, scales = "free"
# , switch = 'x'
, labeller = labeller(lineage = fooNames) ) +
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)
# , ylim = c(0, 6)
# , clip = "off"
) +
scale_fill_gradientn( colours = c("#f8766d", "white", "#00bfc4")
# , ylim = c(0, 6)
# , clip = "off"
) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme( axis.text.x = element_text( size = my_ats
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
# , axis.text.y = element_text( size = my_ats
# , angle = 0
# , hjust = 1
# , vjust = 0)
# , axis.text.y = element_text(size = my_ats
# , angle = 0
# , hjust = 1
# , vjust = 0)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size=my_als)
, legend.text = element_text(size=10)
, legend.title = element_text(size=my_als)
# , legend.position = c(0.3, 0.8)
# , legend.key.height = unit(1, 'mm')
)
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = 10)
, legend.title = element_text(size = my_als)
# , legend.position = c(0.3, 0.8)
# , legend.key.height = unit(1, 'mm')
)
print(printFile)
dev.off()
#=!=!=!=!=!=!
# COMMENT: When you look at all mutations, the lineage differences disappear...
#=!=!=!=!=!=!=!
# COMMENT: Not much differences in the distributions
# when using merged_df2 or merged_df2_comp.
# Also, the lineage differences disappear when looking at all muts
# The pattern we are interested in is possibly only for dr_mutations
#=!=!=!=!=!=!
#=!=!=!=!=!=!=!
#===================================================
# COMPARING DISTRIBUTIONS