a massive waste of time

This commit is contained in:
Tanushree Tunstall 2022-08-22 13:05:53 +01:00
parent 8d6c148fff
commit 4147a6b90f
3 changed files with 726 additions and 620 deletions

File diff suppressed because it is too large Load diff

View file

@ -12,20 +12,19 @@ geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
if (tolower(gene)%in%geneL_na){
infilename_nca = paste0("/home/tanu/git/Misc/mcsm_na_dist/"
, tolower(gene), "_nca_distances.csv")
, tolower(gene), "_nca_distances.csv")
}
#========================================================
# plotting_data(): formatting data for plots
# input args:
## input csv file
## lig cut off dist, default = 10 Ang
## input csv file
## lig cut off dist, default = 10 Ang
# output: list of 4 dfs, that need to be decompressed
## my_df
## my_df_u
## my_df_u_lig
## dup_muts
## my_df
## my_df_u
## my_df_u_lig
## dup_muts
#========================================================
#lig_dist_colname = 'ligand_distance' or global var LigDist_colname
#lig_dist_cutoff = 10 or global var LigDist_cutoff
@ -34,80 +33,121 @@ plotting_data <- function(df
, gene # ADDED
, lig_dist_colname
, lig_dist_cutoff) {
my_df = data.frame()
my_df_u = data.frame()
my_df_u_lig = data.frame()
dup_muts = data.frame()
my_df = data.frame()
my_df_u = data.frame()
my_df_u_lig = data.frame()
dup_muts = data.frame()
#===========================
# Read file: struct params
#===========================
#df = read.csv(infile_params, header = T)
#===========================
# Read file: struct params
#===========================
#df = read.csv(infile_params, header = T)
cat("\nInput dimensions:", dim(df))
cat("\nInput dimensions:", dim(df))
#==================================
# extract unique mutation entries
#==================================
#==================================
# extract unique mutation entries
#==================================
# check for duplicate mutations
if ( length(unique(df$mutationinformation)) != length(df$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these...\n"))
#cat(my_df[duplicated(my_df$mutationinformation),])
dup_muts = df[duplicated(df$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
, "\nNo. of unique duplicate mutations:", dup_muts_nu
, "\n\nExtracting df with unique mutations only\n"))
my_df_u = df[!duplicated(df$mutationinformation),]
}else{
cat(paste0("\nNo duplicate mutations detected\n"))
my_df_u = df
}
# check for duplicate mutations
if ( length(unique(df$mutationinformation)) != length(df$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these...\n"))
#cat(my_df[duplicated(my_df$mutationinformation),])
dup_muts = df[duplicated(df$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
, "\nNo. of unique duplicate mutations:", dup_muts_nu
, "\n\nExtracting df with unique mutations only\n"))
my_df_u = df[!duplicated(df$mutationinformation),]
} else {
cat(paste0("\nNo duplicate mutations detected\n"))
my_df_u = df
}
upos = unique(my_df_u$position)
cat("\nDim of clean df:"); cat(dim(my_df_u), "\n")
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
#===============================================
# ADD : na distance column for genes with nucleic acid affinity
#===============================================
#gid_na_distcol
if (tolower(gene)%in%geneL_na){
upos = unique(my_df_u$position)
cat("\nDim of clean df:"); cat(dim(my_df_u), "\n")
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
#===============================================
# ADD : na distance column for genes with nucleic acid affinity
#===============================================
# if (tolower(gene)%in%geneL_na){
#
# distcol_nca_name = read.csv(infilename_nca, header = F)
# head(distcol_nca_name)
# colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
# head(distcol_nca_name)
# class(distcol_nca_name)
#
# mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
# mcol
# head(my_df_u$mutationinformation)
# head(distcol_nca_name$mutationinformation)
#
# my_df_u = merge(my_df_u, distcol_nca_name,
# by = "mutationinformation",
# all = T)
#
# }
distcol_nca_name = read.csv(infilename_nca, header = F)
head(distcol_nca_name)
colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
head(distcol_nca_name)
class(distcol_nca_name)
if (tolower(gene)%in%geneL_na){
distcol_nca_name = read.csv(infilename_nca, header = F)
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
mcol
head(my_df_u$mutationinformation)
head(distcol_nca_name$mutationinformation)
if (tolower(gene)=='rpob'){
print('WARNING: running special-case handler for rpoB')
my_df_u = merge(my_df_u, distcol_nca_name,
by = "mutationinformation",
all = T)
# create 5uhc equivalent column for mutationinformation
my_df_u$X5uhc_mutationinformation = paste0(my_df_u$wild_type,
my_df_u$X5uhc_position,
my_df_u$mutant_type)
}
#===============================================
# extract mutations <10 Angstroms and symbol
#===============================================
table(my_df_u[[lig_dist_colname]] < lig_dist_cutoff)
colnames(distcol_nca_name) <- c("X5uhc_mutationinformation", "nca_distance")
my_df_u_lig = my_df_u[my_df_u[[lig_dist_colname]] < lig_dist_cutoff,]
# do stuff here
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
cat(paste0("\nMerging for gene: ", tolower(gene), "\non column: ", mcol))
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10\u212b of the ligand\n"))
head(my_df_u$mutationinformation)
head(distcol_nca_name$X5uhc_mutationinformation)
# return list of DFs
my_df = df
#df_names = c("my_df", "my_df_u", "my_df_u_lig", "dup_muts")
all_df = list(my_df, my_df_u, my_df_u_lig, dup_muts)
#all_df = Map(setNames, all_df, df_names)
my_df_u = merge(my_df_u, distcol_nca_name,
by = "X5uhc_mutationinformation",
all = T)
return(all_df)
} else {
head(distcol_nca_name)
colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
head(distcol_nca_name)
class(distcol_nca_name)
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
cat(paste0("\nMerging for gene: ", tolower(gene), "\non column: ", mcol))
head(my_df_u$mutationinformation)
head(distcol_nca_name$mutationinformation)
my_df_u = merge(my_df_u, distcol_nca_name,
by = "mutationinformation",
all = T)
}
}
#===============================================
# extract mutations <10 Angstroms and symbol
#===============================================
table(my_df_u[[lig_dist_colname]] < lig_dist_cutoff)
my_df_u_lig = my_df_u[my_df_u[[lig_dist_colname]] < lig_dist_cutoff,]
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10\u212b of the ligand\n"))
# return list of DFs
my_df = df
#df_names = c("my_df", "my_df_u", "my_df_u_lig", "dup_muts")
all_df = list(my_df, my_df_u, my_df_u_lig, dup_muts)
#all_df = Map(setNames, all_df, df_names)
return(all_df)
}
########################################################################
# end of data extraction and cleaning for plots #
########################################################################

View file

@ -60,8 +60,8 @@ pd_df = plotting_data(mcsm_df
my_df = pd_df[[1]]
my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting()
max_ang <- round(max(my_df_u[LigDist_colname]))
min_ang <- round(min(my_df_u[LigDist_colname]))
max_ang <- round(max(my_df_u[[LigDist_colname]]))
min_ang <- round(min(my_df_u[[LigDist_colname]]))
cat("\nLigand distance colname:", LigDist_colname
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
@ -128,6 +128,11 @@ geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
# geneL_normal = c("pnca")
# geneL_both = c("rpob")
# geneL_ppi2 = c("alr", "embb", "katg")
# geneL_na = c("gid")
all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene = gene)
wf_duet = all_dm_om_df[['wf_duet']]
@ -158,15 +163,27 @@ lf_provean = all_dm_om_df[['lf_provean']]
wf_dist_gen = all_dm_om_df[['wf_dist_gen']]
lf_dist_gen = all_dm_om_df[['lf_dist_gen']]
# ppi2 genes
if (tolower(gene)%in%geneL_ppi2){
wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
}
# na genes
if (tolower(gene)%in%geneL_na){
wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']]
lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']]
}
if (tolower(gene)%in%geneL_ppi2){
wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
}
# both ppi2+na genes:: NOT NEEDED Here as its is handled by the two ifs above
# if (tolower(gene)%in%geneL_both){
# wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
# lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
#
# wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']]
# lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']]
# }
s2 = c("\nSuccessfully sourced other_plots_data.R")
cat(s2)