a massive waste of time

This commit is contained in:
Tanushree Tunstall 2022-08-22 13:05:53 +01:00
parent 8d6c148fff
commit 4147a6b90f
3 changed files with 726 additions and 620 deletions

View file

@ -8,7 +8,7 @@
################################################################## ##################################################################
# from plotting_globals.R # from plotting_globals.R
# DistCutOff, LigDist_colname, ppi2Dist_colname, naDist_colname # DistCutOff, LigDist_colname, ppi2Dist_colname, naDist_colname
gene #gene
dm_om_wf_lf_data <- function(df dm_om_wf_lf_data <- function(df
, gene # from globals , gene # from globals
@ -28,9 +28,15 @@ dm_om_wf_lf_data <- function(df
sum(is.na(df$maf2)) sum(is.na(df$maf2))
# Initialise the required dfs based on gene name # Initialise the required dfs based on gene name
#geneL_normal = c("pnca")
#geneL_na = c("gid", "rpob")
#geneL_ppi2 = c("alr", "embb", "katg", "rpob")
#ADDED: IMPORTANT for rpob to be in both to make sure all data is returned
geneL_normal = c("pnca") geneL_normal = c("pnca")
geneL_na = c("gid", "rpob") geneL_both = c("rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob") geneL_ppi2 = c("alr", "embb", "katg")
geneL_na = c("gid")
# common_dfs # common_dfs
common_dfsL = list( common_dfsL = list(
@ -59,6 +65,14 @@ dm_om_wf_lf_data <- function(df
wf_lf_dataL = common_dfsL wf_lf_dataL = common_dfsL
} }
if (tolower(gene)%in%geneL_ppi2){
additional_dfL = list(
wf_mcsm_ppi2 = data.frame()
, lf_mcsm_ppi2 = data.frame()
)
wf_lf_dataL = c(common_dfsL, additional_dfL)
}
if (tolower(gene)%in%geneL_na){ if (tolower(gene)%in%geneL_na){
additional_dfL = list( additional_dfL = list(
wf_mcsm_na = data.frame() wf_mcsm_na = data.frame()
@ -67,13 +81,16 @@ dm_om_wf_lf_data <- function(df
wf_lf_dataL = c(common_dfsL, additional_dfL) wf_lf_dataL = c(common_dfsL, additional_dfL)
} }
if (tolower(gene)%in%geneL_ppi2){ if (tolower(gene)%in%geneL_both){
additional_dfL = list( additional_dfL = list(
wf_mcsm_ppi2 = data.frame() wf_mcsm_ppi2 = data.frame(),
, lf_mcsm_ppi2 = data.frame() lf_mcsm_ppi2 = data.frame(),
wf_mcsm_na = data.frame(),
lf_mcsm_na = data.frame()
) )
wf_lf_dataL = c(common_dfsL, additional_dfL) wf_lf_dataL = c(common_dfsL, additional_dfL)
} }
cat("\nInitializing an empty list of length:" cat("\nInitializing an empty list of length:"
, length(wf_lf_dataL)) , length(wf_lf_dataL))
@ -237,6 +254,38 @@ dm_om_wf_lf_data <- function(df
} }
if (tolower(gene)%in%geneL_both){
colnames_to_extract = c(
common_colnames,
"mcsm_ppi2_affinity" ,
"mcsm_ppi2_scaled" ,
"mcsm_ppi2_outcome" ,
ppi2Dist_colname,
"mcsm_na_affinity" ,
"mcsm_na_scaled" ,
"mcsm_na_outcome" ,
naDist_colname
)
display_colnames = c(
display_common_colnames,
"mcsm_ppi2_affinity",
mcsm_ppi2_dn,
"mcsm_ppi2_outcome",
ppi2_dist_dn,
"mcsm_na_affinity",
mcsm_na_dn,
"mcsm_na_outcome",
na_dist_dn
)
comb_df_sl = df[, colnames_to_extract]
colnames(comb_df_sl) = display_colnames
comb_df_sl_ppi2 = comb_df_sl[comb_df_sl[[ppi2_dist_dn]]<DistCutOff,]
comb_df_sl_na = comb_df_sl[comb_df_sl[[na_dist_dn]]<DistCutOff,]
static_cols_end = c(na_dist_dn, static_cols_end_common)
}
# Affinity filtered data: mcsm-lig: COMMON for all genes, mcsm-lig --> LigDist_colname # Affinity filtered data: mcsm-lig: COMMON for all genes, mcsm-lig --> LigDist_colname
comb_df_sl_lig = comb_df_sl[comb_df_sl[[lig_dist_dn]]<DistCutOff,] comb_df_sl_lig = comb_df_sl[comb_df_sl[[lig_dist_dn]]<DistCutOff,]

View file

@ -12,7 +12,6 @@ geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob")
if (tolower(gene)%in%geneL_na){ if (tolower(gene)%in%geneL_na){
infilename_nca = paste0("/home/tanu/git/Misc/mcsm_na_dist/" infilename_nca = paste0("/home/tanu/git/Misc/mcsm_na_dist/"
, tolower(gene), "_nca_distances.csv") , tolower(gene), "_nca_distances.csv")
} }
@ -72,25 +71,65 @@ cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
#=============================================== #===============================================
# ADD : na distance column for genes with nucleic acid affinity # ADD : na distance column for genes with nucleic acid affinity
#=============================================== #===============================================
#gid_na_distcol # if (tolower(gene)%in%geneL_na){
if (tolower(gene)%in%geneL_na){ #
# distcol_nca_name = read.csv(infilename_nca, header = F)
# head(distcol_nca_name)
# colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
# head(distcol_nca_name)
# class(distcol_nca_name)
#
# mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
# mcol
# head(my_df_u$mutationinformation)
# head(distcol_nca_name$mutationinformation)
#
# my_df_u = merge(my_df_u, distcol_nca_name,
# by = "mutationinformation",
# all = T)
#
# }
if (tolower(gene)%in%geneL_na){
distcol_nca_name = read.csv(infilename_nca, header = F) distcol_nca_name = read.csv(infilename_nca, header = F)
if (tolower(gene)=='rpob'){
print('WARNING: running special-case handler for rpoB')
# create 5uhc equivalent column for mutationinformation
my_df_u$X5uhc_mutationinformation = paste0(my_df_u$wild_type,
my_df_u$X5uhc_position,
my_df_u$mutant_type)
colnames(distcol_nca_name) <- c("X5uhc_mutationinformation", "nca_distance")
# do stuff here
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
cat(paste0("\nMerging for gene: ", tolower(gene), "\non column: ", mcol))
head(my_df_u$mutationinformation)
head(distcol_nca_name$X5uhc_mutationinformation)
my_df_u = merge(my_df_u, distcol_nca_name,
by = "X5uhc_mutationinformation",
all = T)
} else {
head(distcol_nca_name) head(distcol_nca_name)
colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance") colnames(distcol_nca_name) <- c("mutationinformation", "nca_distance")
head(distcol_nca_name) head(distcol_nca_name)
class(distcol_nca_name) class(distcol_nca_name)
mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)] mcol = colnames(distcol_nca_name)[colnames(distcol_nca_name)%in%colnames(my_df_u)]
mcol cat(paste0("\nMerging for gene: ", tolower(gene), "\non column: ", mcol))
head(my_df_u$mutationinformation) head(my_df_u$mutationinformation)
head(distcol_nca_name$mutationinformation) head(distcol_nca_name$mutationinformation)
my_df_u = merge(my_df_u, distcol_nca_name, my_df_u = merge(my_df_u, distcol_nca_name,
by = "mutationinformation", by = "mutationinformation",
all = T) all = T)
} }
}
#=============================================== #===============================================
# extract mutations <10 Angstroms and symbol # extract mutations <10 Angstroms and symbol
#=============================================== #===============================================
@ -111,3 +150,4 @@ return(all_df)
######################################################################## ########################################################################
# end of data extraction and cleaning for plots # # end of data extraction and cleaning for plots #
######################################################################## ########################################################################

View file

@ -60,8 +60,8 @@ pd_df = plotting_data(mcsm_df
my_df = pd_df[[1]] my_df = pd_df[[1]]
my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting() my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting()
max_ang <- round(max(my_df_u[LigDist_colname])) max_ang <- round(max(my_df_u[[LigDist_colname]]))
min_ang <- round(min(my_df_u[LigDist_colname])) min_ang <- round(min(my_df_u[[LigDist_colname]]))
cat("\nLigand distance colname:", LigDist_colname cat("\nLigand distance colname:", LigDist_colname
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b" , "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
@ -128,6 +128,11 @@ geneL_normal = c("pnca")
geneL_na = c("gid", "rpob") geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob") geneL_ppi2 = c("alr", "embb", "katg", "rpob")
# geneL_normal = c("pnca")
# geneL_both = c("rpob")
# geneL_ppi2 = c("alr", "embb", "katg")
# geneL_na = c("gid")
all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene = gene) all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene = gene)
wf_duet = all_dm_om_df[['wf_duet']] wf_duet = all_dm_om_df[['wf_duet']]
@ -158,15 +163,27 @@ lf_provean = all_dm_om_df[['lf_provean']]
wf_dist_gen = all_dm_om_df[['wf_dist_gen']] wf_dist_gen = all_dm_om_df[['wf_dist_gen']]
lf_dist_gen = all_dm_om_df[['lf_dist_gen']] lf_dist_gen = all_dm_om_df[['lf_dist_gen']]
# ppi2 genes
if (tolower(gene)%in%geneL_ppi2){
wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
}
# na genes
if (tolower(gene)%in%geneL_na){ if (tolower(gene)%in%geneL_na){
wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']] wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']]
lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']] lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']]
} }
if (tolower(gene)%in%geneL_ppi2){ # both ppi2+na genes:: NOT NEEDED Here as its is handled by the two ifs above
wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']] # if (tolower(gene)%in%geneL_both){
lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']] # wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
} # lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
#
# wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']]
# lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']]
# }
s2 = c("\nSuccessfully sourced other_plots_data.R") s2 = c("\nSuccessfully sourced other_plots_data.R")
cat(s2) cat(s2)