added data and ml scripts for 8020 splits

This commit is contained in:
Tanushree Tunstall 2022-06-18 14:42:02 +01:00
parent 2e50a555a0
commit 4037641dfa
7 changed files with 1979 additions and 0 deletions

203
scripts/ml/alr_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'alr'
drug = 'cycloserine'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')

203
scripts/ml/embb_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'embB'
drug = 'ethambutol'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')

203
scripts/ml/gid_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'gid'
drug = 'streptomycin'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')

203
scripts/ml/katg_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'katG'
drug = 'isoniazid'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')

761
scripts/ml/ml_data_8020.py Normal file
View file

@ -0,0 +1,761 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 6 13:41:54 2022
@author: tanu
"""
def setvars(gene,drug):
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
import os, sys
import pandas as pd
import numpy as np
print(np.__version__)
print(pd.__version__)
import pprint as pp
from copy import deepcopy
from collections import Counter
from sklearn.impute import KNNImputer as KNN
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
#%% GLOBALS
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
, 'accuracy' : make_scorer(accuracy_score)
, 'fscore' : make_scorer(f1_score)
, 'precision' : make_scorer(precision_score)
, 'recall' : make_scorer(recall_score)
, 'roc_auc' : make_scorer(roc_auc_score)
, 'jcc' : make_scorer(jaccard_score)
})
skf_cv = StratifiedKFold(n_splits = 10
#, shuffle = False, random_state= None)
, shuffle = True,**rs)
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
, n_repeats = 3
, **rs)
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
#%% FOR LATER: Combine ED logo data
###########################################################################
rs = {'random_state': 42}
njobs = {'n_jobs': 10}
homedir = os.path.expanduser("~")
geneL_basic = ['pnca']
geneL_na = ['gid']
geneL_na_ppi2 = ['rpob']
geneL_ppi2 = ['alr', 'embb', 'katg']
#num_type = ['int64', 'float64']
num_type = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
cat_type = ['object', 'bool']
#==============
# directories
#==============
datadir = homedir + '/git/Data/'
indir = datadir + drug + '/input/'
outdir = datadir + drug + '/output/'
#=======
# input
#=======
#---------
# File 1
#---------
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
my_features_df = pd.read_csv(infile_ml1, index_col = 0)
my_features_df = my_features_df .reset_index(drop = True)
my_features_df.index
my_features_df.dtypes
mycols = my_features_df.columns
#---------
# File 2
#---------
infile_aaindex = outdir + 'aa_index/' + gene.lower() + '_aa.csv'
aaindex_df = pd.read_csv(infile_aaindex, index_col = 0)
aaindex_df.dtypes
#-----------
# check for non-numerical columns
#-----------
if any(aaindex_df.dtypes==object):
print('\naaindex_df contains non-numerical data')
aaindex_df_object = aaindex_df.select_dtypes(include = cat_type)
print('\nTotal no. of non-numerial columns:', len(aaindex_df_object.columns))
expected_aa_ncols = len(aaindex_df.columns) - len(aaindex_df_object.columns)
#-----------
# Extract numerical data only
#-----------
print('\nSelecting numerical data only')
aaindex_df = aaindex_df.select_dtypes(include = num_type)
#---------------------------
# aaindex: sanity check 1
#---------------------------
if len(aaindex_df.columns) == expected_aa_ncols:
print('\nPASS: successfully selected numerical columns only for aaindex_df')
else:
print('\nFAIL: Numbers mismatch'
, '\nExpected ncols:', expected_aa_ncols
, '\nGot:', len(aaindex_df.columns))
#---------------
# check for NA
#---------------
print('\nNow checking for NA in the remaining aaindex_cols')
c1 = aaindex_df.isna().sum()
c2 = c1.sort_values(ascending=False)
print('\nCounting aaindex_df cols with NA'
, '\nncols with NA:', sum(c2>0), 'columns'
, '\nDropping these...'
, '\nOriginal ncols:', len(aaindex_df.columns)
)
aa_df = aaindex_df.dropna(axis=1)
print('\nRevised df ncols:', len(aa_df.columns))
c3 = aa_df.isna().sum()
c4 = c3.sort_values(ascending=False)
print('\nChecking NA in revised df...')
if sum(c4>0):
sys.exit('\nFAIL: aaindex_df still contains cols with NA, please check and drop these before proceeding...')
else:
print('\nPASS: cols with NA successfully dropped from aaindex_df'
, '\nProceeding with combining aa_df with other features_df')
#---------------------------
# aaindex: sanity check 2
#---------------------------
expected_aa_ncols2 = len(aaindex_df.columns) - sum(c2>0)
if len(aa_df.columns) == expected_aa_ncols2:
print('\nPASS: ncols match'
, '\nExpected ncols:', expected_aa_ncols2
, '\nGot:', len(aa_df.columns))
else:
print('\nFAIL: Numbers mismatch'
, '\nExpected ncols:', expected_aa_ncols2
, '\nGot:', len(aa_df.columns))
# Important: need this to identify aaindex cols
aa_df_cols = aa_df.columns
print('\nTotal no. of columns in clean aa_df:', len(aa_df_cols))
###############################################################################
#%% Combining my_features_df and aaindex_df
#===========================
# Merge my_df + aaindex_df
#===========================
if aa_df.columns[aa_df.columns.isin(my_features_df.columns)] == my_features_df.columns[my_features_df.columns.isin(aa_df.columns)]:
print('\nMerging on column: mutationinformation')
if len(my_features_df) == len(aa_df):
expected_nrows = len(my_features_df)
print('\nProceeding to merge, expected nrows in merged_df:', expected_nrows)
else:
sys.exit('\nNrows mismatch, cannot merge. Please check'
, '\nnrows my_df:', len(my_features_df)
, '\nnrows aa_df:', len(aa_df))
#-----------------
# Reset index: mutationinformation
# Very important for merging
#-----------------
aa_df = aa_df.reset_index()
expected_ncols = len(my_features_df.columns) + len(aa_df.columns) - 1 # for the no. of merging col
#-----------------
# Merge: my_features_df + aa_df
#-----------------
merged_df = pd.merge(my_features_df
, aa_df
, on = 'mutationinformation')
#---------------------------
# aaindex: sanity check 3
#---------------------------
if len(merged_df.columns) == expected_ncols:
print('\nPASS: my_features_df and aa_df successfully combined'
, '\nnrows:', len(merged_df)
, '\nncols:', len(merged_df.columns))
else:
sys.exit('\nFAIL: could not combine my_features_df and aa_df'
, '\nCheck dims and merging cols!')
#--------
# Reassign so downstream code doesn't need to change
#--------
my_df = merged_df.copy()
#%% Data: my_df
# Check if non structural pos have crept in
# IDEALLY remove from source! But for rpoB do it here
# Drop NA where numerical cols have them
if gene.lower() in geneL_na_ppi2:
#D1148 get rid of
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
my_df = my_df.drop(index=na_index)
# FIXED: complete data for all muts inc L114M, F115L, V123L, V125I, V131M
# if gene.lower() in ['embb']:
# na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
# my_df = my_df.drop(index=na_index)
# # Sanity check for non-structural positions
# print('\nChecking for non-structural postions')
# na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
# if len(na_index) > 0:
# print('\nNon-structural positions detected for gene:', gene.lower()
# , '\nTotal number of these detected:', len(na_index)
# , '\These are at index:', na_index
# , '\nOriginal nrows:', len(my_df)
# , '\nDropping these...')
# my_df = my_df.drop(index=na_index)
# print('\nRevised nrows:', len(my_df))
# else:
# print('\nNo non-structural positions detected for gene:', gene.lower()
# , '\nnrows:', len(my_df))
###########################################################################
#%% Add lineage calculation columns
#FIXME: Check if this can be imported from config?
total_mtblineage_uc = 8
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
#bar = my_df[lineage_colnames]
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
###########################################################################
#%% Active site annotation column
# change from numberic to categorical
if my_df['active_site'].dtype in num_type:
my_df['active_site'] = my_df['active_site'].astype(object)
my_df['active_site'].dtype
#%% AA property change
#--------------------
# Water prop change
#--------------------
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
my_df['water_change'].value_counts()
water_prop_changeD = {
'hydrophobic_to_neutral' : 'change'
, 'hydrophobic_to_hydrophobic' : 'no_change'
, 'neutral_to_neutral' : 'no_change'
, 'neutral_to_hydrophobic' : 'change'
, 'hydrophobic_to_hydrophilic' : 'change'
, 'neutral_to_hydrophilic' : 'change'
, 'hydrophilic_to_neutral' : 'change'
, 'hydrophilic_to_hydrophobic' : 'change'
, 'hydrophilic_to_hydrophilic' : 'no_change'
}
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
my_df['water_change'].value_counts()
#--------------------
# Polarity change
#--------------------
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
my_df['polarity_change'].value_counts()
polarity_prop_changeD = {
'non-polar_to_non-polar' : 'no_change'
, 'non-polar_to_neutral' : 'change'
, 'neutral_to_non-polar' : 'change'
, 'neutral_to_neutral' : 'no_change'
, 'non-polar_to_basic' : 'change'
, 'acidic_to_neutral' : 'change'
, 'basic_to_neutral' : 'change'
, 'non-polar_to_acidic' : 'change'
, 'neutral_to_basic' : 'change'
, 'acidic_to_non-polar' : 'change'
, 'basic_to_non-polar' : 'change'
, 'neutral_to_acidic' : 'change'
, 'acidic_to_acidic' : 'no_change'
, 'basic_to_acidic' : 'change'
, 'basic_to_basic' : 'no_change'
, 'acidic_to_basic' : 'change'}
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
my_df['polarity_change'].value_counts()
#--------------------
# Electrostatics change
#--------------------
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
my_df['electrostatics_change'].value_counts()
calc_prop_changeD = {
'non-polar_to_non-polar' : 'no_change'
, 'non-polar_to_polar' : 'change'
, 'polar_to_non-polar' : 'change'
, 'non-polar_to_pos' : 'change'
, 'neg_to_non-polar' : 'change'
, 'non-polar_to_neg' : 'change'
, 'pos_to_polar' : 'change'
, 'pos_to_non-polar' : 'change'
, 'polar_to_polar' : 'no_change'
, 'neg_to_neg' : 'no_change'
, 'polar_to_neg' : 'change'
, 'pos_to_neg' : 'change'
, 'pos_to_pos' : 'no_change'
, 'polar_to_pos' : 'change'
, 'neg_to_polar' : 'change'
, 'neg_to_pos' : 'change'
}
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
my_df['electrostatics_change'].value_counts()
#--------------------
# Summary change: Create a combined column summarising these three cols
#--------------------
detect_change = 'change'
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
my_df['aa_prop_change'] = (my_df[check_prop_cols].values == detect_change).any(1).astype(int)
my_df['aa_prop_change'].value_counts()
my_df['aa_prop_change'].dtype
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
, 0: 'no_change'})
my_df['aa_prop_change'].value_counts()
my_df['aa_prop_change'].dtype
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
#--------------------
# Impute OR values
#--------------------
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
or_cols = ['or_mychisq', 'log10_or_mychisq']
print("count of NULL values before imputation\n")
print(my_df[or_cols].isnull().sum())
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
my_dfI = pd.DataFrame(KNN(n_neighbors=3, weights="uniform").fit_transform(my_df[or_cols])
, index = my_df['mutationinformation']
, columns = or_cols )
my_dfI.columns = ['or_rawI', 'logorI']
my_dfI.columns
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
my_dfI.head()
print("count of NULL values AFTER imputation\n")
print(my_dfI.isnull().sum())
#-------------------------------------------
# OR df Merge: with original based on index
#-------------------------------------------
#my_df['index_bm'] = my_df.index
mydf_imputed = pd.merge(my_df
, my_dfI
, on = 'mutationinformation')
#mydf_imputed = mydf_imputed.set_index(['index_bm'])
my_df['log10_or_mychisq'].isna().sum()
mydf_imputed['log10_or_mychisq'].isna().sum()
mydf_imputed['logorI'].isna().sum() # should be 0
len(my_df.columns)
len(mydf_imputed.columns)
#-----------------------------------------
# REASSIGN my_df after imputing OR values
#-----------------------------------------
my_df = mydf_imputed.copy()
if my_df['logorI'].isna().sum() == 0:
print('\nPASS: OR values imputed, data ready for ML')
else:
sys.exit('\nFAIL: something went wrong, Data not ready for ML. Please check upstream!')
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#---------------------------------------
# TODO: try other imputation like MICE
#---------------------------------------
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%########################################################################
#==========================
# Data for ML
#==========================
my_df_ml = my_df.copy()
#%% Build X: input for ML
common_cols_stabiltyN = ['ligand_distance'
, 'ligand_affinity_change'
, 'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'mmcsm_lig'
, 'contacts']
# Build stability columns ~ gene
if gene.lower() in geneL_basic:
X_stabilityN = common_cols_stabiltyN
cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
geneL_na_st_cols = ['mcsm_na_affinity']
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2:
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
]
X_str = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
X_ssFN = X_stabilityN + X_str + X_foldX_cols
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
X_genomic_mafor = ['maf'
, 'logorI'
# , 'or_rawI'
# , 'or_mychisq'
# , 'or_logistic'
# , 'or_fisher'
# , 'pval_fisher'
]
X_genomic_linegae = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique'
]
X_genomicFN = X_genomic_mafor + X_genomic_linegae
X_aaindexFN = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindexFN))
# numerical feature names
numerical_FN = X_ssFN + X_evolFN + X_genomicFN + X_aaindexFN
# categorical feature names
categorical_FN = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
, 'active_site' #[didn't use it for uq_v1]
#, 'gene_name' # will be required for the combined stuff
]
#----------------------------------------------
# count numerical and categorical features
#----------------------------------------------
print('\nNo. of numerical features:', len(numerical_FN)
, '\nNo. of categorical features:', len(categorical_FN))
#=======================
# Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#=======================
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
# (my_df_ml['ligand_affinity_change'] == 0).sum()
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
# mask the mcsm affinity related columns where ligand distance > 10
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
# write file for check
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#####################################################################
#================================================================
# Training and BLIND test set: 80/20
# Throw away previous blind_test_df, and call the 30% data as blind_test
# as these were imputed values and initial analysis shows that this
# is not very representative
#================================================================
my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape
training_df = my_df_ml[my_df_ml[drug].notna()]
training_df.shape
# Target 1: dst_mode
training_df[drug].value_counts()
training_df['dst_mode'].value_counts()
####################################################################
###############################################################################
###############################################################################
# #%% extracting dfs based on numerical, categorical column names
# #----------------------------------
# # WITHOUT the target var included
# #----------------------------------
# num_df = training_df[numerical_FN]
# num_df.shape
# cat_df = training_df[categorical_FN]
# cat_df.shape
# all_df = training_df[numerical_FN + categorical_FN]
# all_df.shape
# #------------------------------
# # WITH the target var included:
# #'wtgt': with target
# #------------------------------
# # drug and dst_mode should be the same thing
# num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
# num_df_wtgt.shape
# cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
# cat_df_wtgt.shape
# all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
# all_df_wtgt.shape
#%%########################################################################
# #============
# # ML data: OLD
# #============
# #------
# # X: Training and Blind test (BTS)
# #------
# X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
# X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
# #X = all_df_wtgt[numerical_FN] # training numerical only
# #X_bts = blind_test_df[numerical_FN] # blind test data numerical
# #------
# # y
# #------
# y = all_df_wtgt['dst_mode'] # training data y
# y_bts = blind_test_df['dst_mode'] # blind data test y
# #X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
###############################################################################
###############################################################################
#======================================
# ML data: Train test split: 80/20
# with stratification
# 80% : training_data for CV
# 20% : blind test
#======================================
# features: all_df or
x_features = training_df[numerical_FN + categorical_FN]
y_target = training_df['dst_mode']
# sanity check
if not 'dst_mode' in x_features.columns:
print('\nPASS: x_features has no target variable')
x_ncols = len(x_features.columns)
print('\nNo. of columns for x_features:', x_ncols)
# NEED It for scaling law split
#https://towardsdatascience.com/finally-why-we-use-an-80-20-split-for-training-and-test-data-plus-an-alternative-method-oh-yes-edc77e96295d
else:
sys.exit('\nFAIL: x_features has target variable included. FIX it and rerun!')
#x_train, x_test, y_train, y_test # traditional var_names
# so my downstream code doesn't need to change
X, X_bts, y, y_bts = train_test_split(x_features, y_target
, test_size = 0.2
, **rs
, stratify = y_target)
yc1 = Counter(y)
yc1_ratio = yc1[0]/yc1[1]
yc2 = Counter(y_bts)
yc2_ratio = yc2[0]/yc2[1]
print('\n-------------------------------------------------------------'
, '\nSuccessfully split data with stratification: 80/20 '
, '\nTrain data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\ny_train numbers:', yc1
, '\ny_train ratio:',yc1_ratio
, '\n'
, '\ny_test_numbers:', yc2
, '\ny_test ratio:', yc2_ratio
, '\n-------------------------------------------------------------'
)
##########################################################################
# Quick check
#(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
for i in range(len(cols_to_mask)):
ind = i+1
print('\nindex:', i, '\nind:', ind)
print('\nMask count check:'
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
)
print('Original Data\n', Counter(y)
, 'Data dim:', X.shape)
###########################################################################
#%%
###########################################################################
# RESAMPLING
###########################################################################
#------------------------------
# Simple Random oversampling
# [Numerical + catgeorical]
#------------------------------
oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y)
print('\nSimple Random OverSampling\n', Counter(y_ros))
print(X_ros.shape)
#------------------------------
# Simple Random Undersampling
# [Numerical + catgeorical]
#------------------------------
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rus, y_rus = undersample.fit_resample(X, y)
print('\nSimple Random UnderSampling\n', Counter(y_rus))
print(X_rus.shape)
#------------------------------
# Simple combine ROS and RUS
# [Numerical + catgeorical]
#------------------------------
oversample = RandomOverSampler(sampling_strategy='minority')
X_ros, y_ros = oversample.fit_resample(X, y)
undersample = RandomUnderSampler(sampling_strategy='majority')
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
print('\nSimple Combined Over and UnderSampling\n', Counter(y_rouC))
print(X_rouC.shape)
#------------------------------
# SMOTE_NC: oversampling
# [numerical + categorical]
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
#------------------------------
# Determine categorical and numerical features
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
numerical_ix
num_featuresL = list(numerical_ix)
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
numerical_colind
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
categorical_ix
categorical_colind = X.columns.get_indexer(list(categorical_ix))
categorical_colind
k_sm = 5 # 5 is default
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
print('\nSMOTE_NC OverSampling\n', Counter(y_smnc))
print(X_smnc.shape)
globals().update(locals()) # TROLOLOLOLOLOLS
#print("i did a horrible hack :-)")
###############################################################################
#%% SMOTE RESAMPLING for NUMERICAL ONLY*
# #------------------------------
# # SMOTE: Oversampling
# # [Numerical ONLY]
# #------------------------------
# k_sm = 1
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
# X_sm, y_sm = sm.fit_resample(X, y)
# print(X_sm.shape)
# print('\nSMOTE OverSampling\n', Counter(y_sm))
# y_sm_df = y_sm.to_frame()
# y_sm_df.value_counts().plot(kind = 'bar')
# #------------------------------
# # SMOTE: Over + Undersampling COMBINED
# # [Numerical ONLY]
# #-----------------------------
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
# X_enn, y_enn = sm_enn.fit_resample(X, y)
# print(X_enn.shape)
# print('\nSMOTE Over+Under Sampling combined\n', Counter(y_enn))
###############################################################################
# TODO: Find over and undersampling JUST for categorical data

203
scripts/ml/pnca_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'pncA'
drug = 'pyrazinamide'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')

203
scripts/ml/rpob_8020.py Executable file
View file

@ -0,0 +1,203 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 28 05:25:30 2022
@author: tanu
"""
import os
gene = 'rpoB'
drug = 'rifampicin'
#total_mtblineage_uc = 8
homedir = os.path.expanduser("~")
os.chdir( homedir + '/git/LSHTM_analysis/scripts/ml/')
from ml_data_8020 import *
setvars(gene,drug)
from ml_data_8020 import *
# from YC run_all_ML: run locally
#from UQ_yc_RunAllClfs import run_all_ML
# TT run all ML clfs: baseline mode
from MultModelsCl import MultModelsCl
################################################################################
print('\n#####################################################################\n'
, '\nRunning ML analysis: 80/20 split'
, '\nGene name:', gene
, '\nDrug name:', drug)
#==================
# Specify outdir
#==================
outdir_ml = outdir + 'ml/tts_8020/'
print('\nOutput directory:', outdir_ml)
#%%###########################################################################
print('\nSanity checks:'
#, '\nML source data size:', x_features.shape
, '\nTotal input features:', len(X.columns)
, '\n'
, '\nTraining data size:', X.shape
, '\nTest data size:', X_bts.shape
, '\n'
, '\nTarget feature numbers (training data):', Counter(y)
, '\nTarget features ratio (training data:', yc1_ratio
, '\n'
, '\nTarget feature numbers (test data):', Counter(y_bts)
, '\nTarget features ratio (test data):', yc2_ratio
, '\n\n#####################################################################\n')
print('\n================================================================\n')
print('Strucutral features (n):'
, len(X_ssFN)
, '\nThese are:'
, '\nCommon stablity features:', X_stabilityN
, '\nFoldX columns:', X_foldX_cols
, '\nOther struc columns:', X_str
, '\n================================================================\n')
print('AAindex features (n):'
, len(X_aaindexFN)
, '\nThese are:\n'
, X_aaindexFN
, '\n================================================================\n')
print('Evolutionary features (n):'
, len(X_evolFN)
, '\nThese are:\n'
, X_evolFN
, '\n================================================================\n')
print('Genomic features (n):'
, len(X_genomicFN)
, '\nThese are:\n'
, X_genomic_mafor, '\n'
, X_genomic_linegae
, '\n================================================================\n')
print('Categorical features (n):'
, len(categorical_FN)
, '\nThese are:\n'
, categorical_FN
, '\n================================================================\n')
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
print('\nPass: No. of features match')
else:
sys.exit('\nFail: Count of feature mismatch')
print('\n#####################################################################\n')
################################################################################
#==================
# Baseline models
#==================
mm_skf_scoresD = MultModelsCl(input_df = X
, target = y
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
baseline_all = pd.DataFrame(mm_skf_scoresD)
baseline_all = baseline_all.T
#baseline_train = baseline_all.filter(like='train_', axis=1)
baseline_CT = baseline_all.filter(like='test_', axis=1)
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
baseline_BT = baseline_all.filter(like='bts_', axis=1)
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
baseline_CT.to_csv(outdir_ml + gene.lower() + '_baseline_CT_allF.csv')
baseline_BT.to_csv(outdir_ml + gene.lower() + '_baseline_BT_allF.csv')
#%% SMOTE NC: Oversampling [Numerical + categorical]
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
, target = y_smnc
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
smnc_all = pd.DataFrame(mm_skf_scoresD7)
smnc_all = smnc_all.T
smnc_CT = smnc_all.filter(like='test_', axis=1)
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
smnc_BT = smnc_all.filter(like='bts_', axis=1)
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
smnc_CT.to_csv(outdir_ml + gene.lower() + '_smnc_CT_allF.csv')
smnc_BT.to_csv(outdir_ml + gene.lower() + '_smnc_BT_allF.csv')
#%% ROS: Numerical + categorical
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
, target = y_ros
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
ros_all = pd.DataFrame(mm_skf_scoresD3)
ros_all = ros_all.T
ros_CT = ros_all.filter(like='test_', axis=1)
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
ros_BT = ros_all.filter(like='bts_', axis=1)
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
ros_CT.to_csv(outdir_ml + gene.lower() + '_ros_CT_allF.csv')
ros_BT.to_csv(outdir_ml + gene.lower() + '_ros_BT_allF.csv')
#%% RUS: Numerical + categorical
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
, target = y_rus
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rus_all = pd.DataFrame(mm_skf_scoresD4)
rus_all = rus_all.T
rus_CT = rus_all.filter(like='test_', axis=1)
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rus_BT = rus_all.filter(like='bts_' , axis=1)
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rus_CT.to_csv(outdir_ml + gene.lower() + '_rus_CT_allF.csv')
rus_BT.to_csv(outdir_ml + gene.lower() + '_rus_BT_allF.csv')
#%% ROS + RUS Combined: Numerical + categorical
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
, target = y_rouC
, var_type = 'mixed'
, skf_cv = skf_cv
, blind_test_input_df = X_bts
, blind_test_target = y_bts)
rouC_all = pd.DataFrame(mm_skf_scoresD8)
rouC_all = rouC_all.T
rouC_CT = rouC_all.filter(like='test_', axis=1)
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
rouC_BT = rouC_all.filter(like='bts_', axis=1)
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
# Write csv
rouC_CT.to_csv(outdir_ml + gene.lower() + '_rouC_CT_allF.csv')
rouC_BT.to_csv(outdir_ml + gene.lower() + '_rouC_BT_allF.csv')