all barplots generated for ps and lig
This commit is contained in:
parent
0220960975
commit
3f8d6695a4
5 changed files with 656 additions and 0 deletions
45
scripts/plotting/autoviz.py
Normal file
45
scripts/plotting/autoviz.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
#!/usr/bin/env python3
|
||||
#=======================================================================
|
||||
#%% useful links
|
||||
#https://towardsdatascience.com/autoviz-automatically-visualize-any-dataset-ba2691a8b55a
|
||||
#https://pypi.org/project/autoviz/
|
||||
#=======================================================================
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
import argparse
|
||||
from autoviz.AutoViz_Class import AutoViz_Class
|
||||
|
||||
homedir = os.path.expanduser('~')
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||
#%%============================================================================
|
||||
# variables
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
|
||||
#%%============================================================================
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
indir = datadir + '/' + drug + '/input'
|
||||
|
||||
outdir = datadir + '/' + drug + '/output'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
in_filename_plotting = 'car_design.csv'
|
||||
in_filename_plotting = gene.lower() + '_all_params.csv'
|
||||
infile_plotting = outdir + '/' + in_filename_plotting
|
||||
print('plotting file: ', infile_plotting
|
||||
, '\n============================================================')
|
||||
#=======================================================================
|
||||
plotting_df = pd.read_csv(infile_plotting, sep = ',')
|
||||
#Instantiate the AutoViz class
|
||||
AV = AutoViz_Class()
|
||||
df = AV.AutoViz(infile_plotting)
|
||||
#df2 = AV.AutoViz(plotting_df)
|
||||
plotting_df.columns[~plotting_df.columns.isin(df.columns)]
|
265
scripts/plotting/barplots_subcolours_aa_LIG.R
Executable file
265
scripts/plotting/barplots_subcolours_aa_LIG.R
Executable file
|
@ -0,0 +1,265 @@
|
|||
#!/usr/bin/env Rscript
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#########################################################
|
||||
# TASK: output barplot by position with each bar coloured by
|
||||
# its stability value and active site positions indicated
|
||||
# according to colour specified in "subcols_axis_PS.R"
|
||||
#########################################################
|
||||
|
||||
#=======================================================================
|
||||
|
||||
############################################################
|
||||
# 1: Installing and loading required packages and functions
|
||||
############################################################
|
||||
|
||||
#source("Header_TT.R")
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
source("barplot_colour_function.R")
|
||||
#source("subcols_axis.R")
|
||||
source("subcols_axis_PS.R")
|
||||
|
||||
# should return the following dfs, directories and variables
|
||||
# mut_pos_cols
|
||||
# mut_pos_cols_lig
|
||||
# my_df_cols
|
||||
# my_df_u_cols
|
||||
# my_df_u_lig_cols
|
||||
# dup_muts_cols
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nLength of upos:", length(upos)
|
||||
, "\nAngstrom symbol:", angstroms_symbol))
|
||||
|
||||
# clear excess variable
|
||||
rm(dup_muts_cols, mut_pos_cols, my_df_cols, my_df_u_cols, upos)
|
||||
|
||||
#=======================================================================
|
||||
# !!! very important!!!!
|
||||
#================
|
||||
# Inspecting mut_pos_cols
|
||||
# position numbers and colours and assigning axis colours based on lab_fg
|
||||
# of the correct df
|
||||
# open file from desktop ("sample_axis_cols") for cross checking
|
||||
#================
|
||||
if ( nrow(mut_pos_cols_lig) == length(unique(my_df_u_cols_lig$position)) ){
|
||||
print("PASS: lengths checked, assigning axis colours")
|
||||
my_axis_colours = mut_pos_cols_lig$lab_fg
|
||||
cat("length of axis colours:", length(my_axis_colours)
|
||||
, "\nwhich corresponds to the number of positions on the x-axis of the plot")
|
||||
}else{
|
||||
print("FAIL:lengths mismatch, could not assign axis colours")
|
||||
quit()
|
||||
}
|
||||
|
||||
# further sanity checks
|
||||
table(mut_pos_cols_lig$lab_bg)
|
||||
check_lab_bg = sum( table(mut_pos_cols_lig$lab_bg) ) == nrow(mut_pos_cols_lig) # should be True
|
||||
check_lab_bg
|
||||
|
||||
table(mut_pos_cols_lig$lab_bg2)
|
||||
check_lab_bg2 = sum( table(mut_pos_cols_lig$lab_bg2) ) == nrow(mut_pos_cols_lig) # should be True
|
||||
check_lab_bg2
|
||||
|
||||
table(mut_pos_cols_lig$lab_fg)
|
||||
check_lab_fg = sum( table(mut_pos_cols_lig$lab_fg) ) == nrow(mut_pos_cols_lig) # should be True
|
||||
check_lab_fg
|
||||
|
||||
# sanity checks:
|
||||
if (check_lab_bg && check_lab_bg2 && check_lab_fg) {
|
||||
print("PASS: No. of assigned colours match length")
|
||||
}else{
|
||||
print("FAIL: length of assigned colours mismatch")
|
||||
quit()
|
||||
}
|
||||
#=======================================================================
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# plot name and location
|
||||
print(paste0("plot will be in:", plotdir))
|
||||
bp_aa_subcols_ligand = "barplot_acoloured_LIG.svg"
|
||||
plot_bp_aa_subcols_ligand = paste0(plotdir, "/", bp_aa_subcols_ligand)
|
||||
|
||||
#=======================================================================
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u_cols_lig
|
||||
|
||||
cat("ligand df dim:", dim(df))
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
|
||||
# sanity check
|
||||
df[df$position == "49",]
|
||||
df[df$position == "13",]
|
||||
df[df$position == "103",]
|
||||
|
||||
###########################
|
||||
# Plot: Ligand affinity
|
||||
###########################
|
||||
|
||||
#==========================
|
||||
# Barplot with scores (unordered)
|
||||
# corresponds to ligand_outcome
|
||||
# Stacked Barplot with colours: ligand_outcome @ position coloured by
|
||||
# stability scores. This is a barplot where each bar corresponds
|
||||
# to a SNP and is coloured by its corresponding ligand stability value.
|
||||
# Normalised values (range between -1 and 1 ) to aid visualisation
|
||||
# NOTE: since barplot plots discrete values, colour = score, so number of
|
||||
# colours will be equal to the no. of unique normalised scores
|
||||
# rather than a continuous scale
|
||||
# will require generating the colour scale separately.
|
||||
#============================
|
||||
# sanity checks
|
||||
upos = unique(df$position)
|
||||
|
||||
table(df$ligand_outcome)
|
||||
table(df$ligand_outcome)
|
||||
|
||||
# add frequency of positions (from lib data.table)
|
||||
setDT(df)[, pos_count := .N, by = .(position)]
|
||||
|
||||
# this is cummulative
|
||||
table(df$pos_count)
|
||||
|
||||
# use group by on this
|
||||
library(dplyr)
|
||||
snpsBYpos_df <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(snpsBYpos = mean(pos_count))
|
||||
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
|
||||
snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
|
||||
|
||||
# sanity checks
|
||||
# should be a factor
|
||||
if (is.factor(df$ligand_outcome)){
|
||||
print("ligand_outcome is factor")
|
||||
}else{
|
||||
print("converting ligand_outcome to factor")
|
||||
df$ligand_outcome = as.factor(df$ligand_outcome)
|
||||
}
|
||||
|
||||
is.factor(df$ligand_outcome)
|
||||
|
||||
table(df$ligand_outcome)
|
||||
|
||||
# may not be -1 and 1 since these are filtered within 10A
|
||||
min(df$affinity_scaled)
|
||||
max(df$affinity_scaled)
|
||||
|
||||
# sanity checks
|
||||
# very important!!!!
|
||||
tapply(df$affinity_scaled, df$ligand_outcome, min)
|
||||
|
||||
tapply(df$affinity_scaled, df$ligand_outcome, max)
|
||||
|
||||
# My colour FUNCTION: based on group and subgroup
|
||||
# in my case;
|
||||
# df = df
|
||||
# group = ligand_outcome
|
||||
# subgroup = normalised score i.e affinity_scaled
|
||||
|
||||
# check unique values in normalised data
|
||||
u = unique(df$affinity_scaled)
|
||||
cat("No. of unique values in normalised data:", length(u))
|
||||
|
||||
# Define group
|
||||
# Create an extra column called group which contains the "gp name and score"
|
||||
# so colours can be generated for each unique values in this column
|
||||
my_grp = df$affinity_scaled
|
||||
df$group <- paste0(df$ligand_outcome, "_", my_grp, sep = "")
|
||||
|
||||
# Call the function to create the palette based on the group defined above
|
||||
colours <- ColourPalleteMulti(df, "ligand_outcome", "my_grp")
|
||||
print(paste0("Colour palette generated for: ", length(colours), " colours"))
|
||||
my_title = "Ligand affinity"
|
||||
cat("No. of axis colours: ", length(my_axis_colours))
|
||||
|
||||
#========================
|
||||
# plot with axis colours
|
||||
#========================
|
||||
class(df$lab_bg)
|
||||
|
||||
# define cartesian coord
|
||||
my_xlim = length(unique(df$position)); my_xlim
|
||||
|
||||
# axis label size
|
||||
my_xals = 18
|
||||
my_yals = 18
|
||||
|
||||
# axes text size
|
||||
my_xats = 14
|
||||
my_yats = 18
|
||||
|
||||
#******************
|
||||
# generate plot: with axis colours
|
||||
#******************
|
||||
print(paste0("plot name:", plot_bp_aa_subcols_ligand))
|
||||
|
||||
svg(plot_bp_aa_subcols_ligand, width = 26, height = 4)
|
||||
|
||||
g = ggplot(df, aes(factor(position, ordered = T)))
|
||||
|
||||
outPlot = g +
|
||||
coord_cartesian(xlim = c(1, my_xlim)
|
||||
#, ylim = c(0, 6)
|
||||
, ylim = c(0, max(snp_count))
|
||||
, clip = "off") +
|
||||
geom_bar(aes(fill = group), colour = "grey") +
|
||||
scale_fill_manual(values = colours
|
||||
, guide = "none") +
|
||||
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
|
||||
, fill = df$lab_bg) +
|
||||
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
|
||||
, fill = df$lab_bg2) +
|
||||
|
||||
# Here it"s important to specify that your axis goes from 1 to max number of levels
|
||||
theme(axis.text.x = element_text(size = my_xats
|
||||
, angle = 90
|
||||
, hjust = 1
|
||||
, vjust = 0.4
|
||||
, colour = my_axis_colours)
|
||||
|
||||
, axis.text.y = element_text(size = my_yats
|
||||
, angle = 0
|
||||
, hjust = 1
|
||||
, vjust = 0)
|
||||
, axis.title.x = element_text(size = my_xals)
|
||||
#, hjust = 1
|
||||
#, vjust = 0.4)
|
||||
, axis.title.y = element_text(size = my_yals )
|
||||
, axis.ticks.x = element_blank()) +
|
||||
labs(title = ""
|
||||
#title = my_title
|
||||
, x = "position"
|
||||
, y = "Frequency")
|
||||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
|
||||
#!!!!!!!!!!!!!!!!
|
||||
#Warning message:
|
||||
# Vectorized input to `element_text()` is not officially supported.
|
||||
#Results may be unexpected or may change in future versions of ggplot2.
|
||||
#!!!!!!!!!!!!!!!!!
|
||||
|
||||
# for sanity and good practice
|
||||
#rm(df)
|
193
scripts/plotting/basic_barplots_LIG.R
Executable file
193
scripts/plotting/basic_barplots_LIG.R
Executable file
|
@ -0,0 +1,193 @@
|
|||
#!/usr/bin/env Rscript
|
||||
#########################################################
|
||||
# TASK: producing barplots
|
||||
# basic barplots with count of mutations
|
||||
# basic barplots with frequency of count of mutations
|
||||
#########################################################
|
||||
#=======================================================================
|
||||
# working dir and loading libraries
|
||||
getwd()
|
||||
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
||||
getwd()
|
||||
|
||||
#source("Header_TT.R")
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
library(dplyr)
|
||||
source("plotting_data.R")
|
||||
|
||||
# should return the following dfs and directories
|
||||
# my_df
|
||||
# my_df_u
|
||||
# my_df_u_lig
|
||||
# dup_muts
|
||||
|
||||
cat(paste0("Directories imported:"
|
||||
, "\ndatadir:", datadir
|
||||
, "\nindir:", indir
|
||||
, "\noutdir:", outdir
|
||||
, "\nplotdir:", plotdir))
|
||||
|
||||
cat(paste0("Variables imported:"
|
||||
, "\ndrug:", drug
|
||||
, "\ngene:", gene
|
||||
, "\ngene_match:", gene_match
|
||||
, "\nLength of upos:", length(upos)
|
||||
, "\nAngstrom symbol:", angstroms_symbol))
|
||||
|
||||
# clear excess variable
|
||||
rm(my_df, upos, dup_muts, my_df_u)
|
||||
|
||||
#=======================================================================
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# plot 1
|
||||
basic_bp_ligand = "basic_barplot_LIG.svg"
|
||||
plot_basic_bp_ligand = paste0(plotdir,"/", basic_bp_ligand)
|
||||
|
||||
# plot 2
|
||||
pos_count_ligand = "position_count_LIG.svg"
|
||||
plot_pos_count_ligand = paste0(plotdir, "/", pos_count_ligand)
|
||||
|
||||
#=======================================================================
|
||||
#================
|
||||
# Data for plots
|
||||
#================
|
||||
# REASSIGNMENT as necessary
|
||||
df = my_df_u_lig
|
||||
rm(my_df_u, my_df, upos, dup_muts)
|
||||
|
||||
# sanity checks
|
||||
str(df)
|
||||
#=====================================================================
|
||||
#****************
|
||||
# Plot 1:Count of stabilising and destabilsing muts
|
||||
#****************
|
||||
|
||||
#svg("basic_barplots_LIG.svg")
|
||||
svg(plot_basic_bp_ligand)
|
||||
print(paste0("plot1 filename:", basic_bp_ligand))
|
||||
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
theme_set(theme_grey())
|
||||
|
||||
#--------------
|
||||
# start plot 1
|
||||
#--------------
|
||||
g = ggplot(df, aes(x = ligand_outcome))
|
||||
outPlot = g + geom_bar(aes(fill = ligand_outcome)
|
||||
, show.legend = TRUE) +
|
||||
geom_label(stat = "count"
|
||||
, aes(label = ..count..)
|
||||
, color = "black"
|
||||
, show.legend = FALSE
|
||||
, size = 10) +
|
||||
theme(axis.text.x = element_blank()
|
||||
, axis.title.x = element_blank()
|
||||
, axis.title.y = element_text(size=my_als)
|
||||
, axis.text.y = element_text(size = my_ats)
|
||||
, legend.position = c(0.73,0.8)
|
||||
, legend.text = element_text(size=my_als-2)
|
||||
, legend.title = element_text(size=my_als)
|
||||
, plot.title = element_blank()) +
|
||||
labs(title = ""
|
||||
, y = "Number of SNPs"
|
||||
#, fill="ligand_outcome"
|
||||
) +
|
||||
scale_fill_discrete(name = "Ligand Outcome"
|
||||
, labels = c("Destabilising", "Stabilising"))
|
||||
|
||||
print(outPlot)
|
||||
dev.off()
|
||||
|
||||
table(df$ligand_outcome)
|
||||
#=======================================================================
|
||||
#****************
|
||||
# Plot 2: frequency of positions
|
||||
#****************
|
||||
df_ncols = ncol(df)
|
||||
df_nrows = nrow(df)
|
||||
|
||||
cat(paste0("original df dimensions:"
|
||||
, "\nNo. of rows:", df_nrows
|
||||
, "\nNo. of cols:", df_ncols
|
||||
, "\nNow adding column: frequency of mutational positions"))
|
||||
|
||||
#setDT(df)[, .(pos_count := .N), by = .(position)]
|
||||
setDT(df)[, pos_count := .N, by = .(position)]
|
||||
|
||||
rm(df_nrows, df_ncols)
|
||||
|
||||
df_nrows = nrow(df)
|
||||
df_ncols = ncol(df)
|
||||
|
||||
cat(paste0("revised df dimensions:"
|
||||
, "\nNo. of rows:", df_nrows
|
||||
, "\nNo. of cols:", df_ncols))
|
||||
|
||||
# this is cummulative
|
||||
table(df$pos_count)
|
||||
|
||||
# use group by on this
|
||||
snpsBYpos_df <- df %>%
|
||||
group_by(position) %>%
|
||||
summarize(snpsBYpos = mean(pos_count))
|
||||
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
# FIXME, get this mutation_info, perhaLIG useful!
|
||||
foo = select(df, mutationinformation
|
||||
, wild_pos
|
||||
, wild_type
|
||||
, mutant_type
|
||||
#, mutation_info # comes from meta data, notused yet
|
||||
, position
|
||||
, pos_count)
|
||||
|
||||
#write.csv(foo, "/pos_count_freq.csv")
|
||||
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
#--------------
|
||||
# start plot 2
|
||||
#--------------
|
||||
#svg("position_count_LIG.svg")
|
||||
svg(plot_pos_count_ligand)
|
||||
print(paste0("plot filename:", plot_pos_count_ligand))
|
||||
|
||||
my_ats = 25 # axis text size
|
||||
my_als = 22 # axis label size
|
||||
|
||||
# to make x axis display all positions
|
||||
# not sure if to use with sort or directly
|
||||
my_x = sort(unique(snpsBYpos_df$snpsBYpos))
|
||||
|
||||
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
|
||||
outPlot_pos = g + geom_bar(aes (alpha = 0.5)
|
||||
, show.legend = FALSE) +
|
||||
scale_x_continuous(breaks = unique(snpsBYpos_df$snpsBYpos)) +
|
||||
#scale_x_continuous(breaks = my_x) +
|
||||
geom_label(stat = "count", aes(label = ..count..)
|
||||
, color = "black"
|
||||
, size = 10) +
|
||||
theme(axis.text.x = element_text(size = my_ats
|
||||
, angle = 0)
|
||||
, axis.text.y = element_text(size = my_ats
|
||||
, angle = 0
|
||||
, hjust = 1)
|
||||
, axis.title.x = element_text(size = my_als)
|
||||
, axis.title.y = element_text(size = my_als)
|
||||
, plot.title = element_blank()) +
|
||||
|
||||
labs(x = "Number of SNPs"
|
||||
, y = "Number of Sites")
|
||||
|
||||
print(outPlot_pos)
|
||||
dev.off()
|
||||
########################################################################
|
||||
# end of lig barplots
|
||||
########################################################################
|
||||
|
87
scripts/plotting/columns_all_params.csv
Normal file
87
scripts/plotting/columns_all_params.csv
Normal file
|
@ -0,0 +1,87 @@
|
|||
,x,,changes,
|
||||
1,mutationinformation,,Mutationinformation,
|
||||
2,wild_type,,,consider...wild_aa
|
||||
3,position,,Position,
|
||||
4,mutant_type,,,consider...mutant_aa
|
||||
5,chain,,,
|
||||
6,ligand_id,,,
|
||||
7,ligand_distance,,,
|
||||
8,duet_stability_change,,,
|
||||
9,duet_outcome,,DUET_outcome,
|
||||
10,ligand_affinity_change,,,
|
||||
11,ligand_outcome,,Lig_outcome,
|
||||
12,duet_scaled,,ratioDUET,
|
||||
13,affinity_scaled,,ratioPredAff,
|
||||
14,wild_pos,,WildPos,
|
||||
15,wild_chain_pos,,,
|
||||
16,ddg,,,
|
||||
17,contacts,,,
|
||||
18,electro_rr,,,
|
||||
19,electro_mm,,,
|
||||
20,electro_sm,,,
|
||||
21,electro_ss,,,
|
||||
22,disulfide_rr,,,
|
||||
23,disulfide_mm,,,
|
||||
24,disulfide_sm,,,
|
||||
25,disulfide_ss,,,
|
||||
26,hbonds_rr,,,
|
||||
27,hbonds_mm,,,
|
||||
28,hbonds_sm,,,
|
||||
29,hbonds_ss,,,
|
||||
30,partcov_rr,,,
|
||||
31,partcov_mm,,,
|
||||
32,partcov_sm,,,
|
||||
33,partcov_ss,,,
|
||||
34,vdwclashes_rr,,,
|
||||
35,vdwclashes_mm,,,
|
||||
36,vdwclashes_sm,,,
|
||||
37,vdwclashes_ss,,,
|
||||
38,volumetric_rr,,,
|
||||
39,volumetric_mm,,,
|
||||
40,volumetric_sm,,,
|
||||
41,volumetric_ss,,,
|
||||
42,wild_type_dssp,,,
|
||||
43,asa,,,
|
||||
44,rsa,,,
|
||||
45,ss,,,
|
||||
46,ss_class,,,
|
||||
47,chain_id,,,
|
||||
48,wild_type_kd,,,
|
||||
49,kd_values,,,
|
||||
50,rd_values,,,
|
||||
51,wt_3letter_caps,,,
|
||||
52,mutation,,,
|
||||
53,af,,,
|
||||
54,beta_logistic,,,
|
||||
55,or_logistic,,,
|
||||
56,pval_logistic,,,
|
||||
57,se_logistic,,,
|
||||
58,zval_logistic,,,
|
||||
59,ci_low_logistic,,,
|
||||
60,ci_hi_logistic,,,
|
||||
61,or_mychisq,,,
|
||||
62,or_fisher,,,
|
||||
63,pval_fisher,,,
|
||||
64,ci_low_fisher,,,
|
||||
65,ci_hi_fisher,,,
|
||||
66,est_chisq,,,
|
||||
67,pval_chisq,,,
|
||||
68,chromosome_number,,,
|
||||
69,ref_allele,,,
|
||||
70,alt_allele,,,
|
||||
71,mut_type,,,
|
||||
72,gene_id,,,
|
||||
73,gene_number,,,
|
||||
74,mut_region,,,
|
||||
75,mut_info,,,
|
||||
76,chr_num_allele,,,
|
||||
77,wt_3let,,,
|
||||
78,mt_3let,,,
|
||||
79,af_kin,,,
|
||||
80,or_kin,,,
|
||||
81,pwald_kin,,,
|
||||
82,beta_kin,,,
|
||||
83,se_kin,,,
|
||||
84,logl_h1_kin,,,
|
||||
85,l_remle_kin,,,
|
||||
86,n_miss,,,
|
|
66
scripts/plotting/notes
Normal file
66
scripts/plotting/notes
Normal file
|
@ -0,0 +1,66 @@
|
|||
#####################
|
||||
# combining_two_df.R
|
||||
#####################
|
||||
orig_col ==> df_ncols
|
||||
Mutationinformation ==> mutationinformation
|
||||
Position ==> position
|
||||
DUET_outcome ==> duet_outcome
|
||||
Lig_outcome ==> ligand_outcome
|
||||
|
||||
infile ==> infile_params
|
||||
in_filename_comb ==> in_filename_metadata
|
||||
meta_with_afor ==> gene_metadata
|
||||
|
||||
#!!!!!!!!!
|
||||
# FIXME: plotting_data.R
|
||||
#!!!!!!!!!
|
||||
|
||||
# This script will be called by various plotting scripts.
|
||||
# Ensure you can call this using command line args which are currently commented out
|
||||
|
||||
#####################
|
||||
# basic_barplots_PS.R
|
||||
#####################
|
||||
dim(my_df)
|
||||
416, 86
|
||||
|
||||
# unique mutations
|
||||
dim(my_df_u)
|
||||
403, 86
|
||||
|
||||
# all dups identified are destabilising
|
||||
dups_df = 13 rows
|
||||
11 unique muts
|
||||
|
||||
upos = unique(my_df_u$position)
|
||||
145
|
||||
|
||||
df = my_df_u
|
||||
|
||||
df$duet_outcome
|
||||
|
||||
Destabilising Stabilising
|
||||
346 57
|
||||
|
||||
|
||||
# with dups
|
||||
Destabilising Stabilising
|
||||
359 57
|
||||
|
||||
table(df$pos_count)
|
||||
# this is cummulative
|
||||
#1 2 3 4 5 6
|
||||
#39 62 81 100 85 36
|
||||
|
||||
# with dups
|
||||
1 2 3 4 5 6 7
|
||||
39 60 75 92 100 36 14
|
||||
|
||||
# use group by
|
||||
table(snpsBYpos_df$snpsBYpos)
|
||||
#1 2 3 4 5 6
|
||||
#39 31 27 25 17 6
|
||||
|
||||
# with dups
|
||||
1 2 3 4 5 6 7
|
||||
39 30 25 23 20 6 2
|
Loading…
Add table
Add a link
Reference in a new issue