added shorter scripts for each different processing for plots to make it wasire to read code

This commit is contained in:
Tanushree Tunstall 2021-09-10 18:20:45 +01:00
parent 27f0b15d4c
commit 3f3fe89a6b
6 changed files with 1292 additions and 0 deletions

View file

@ -0,0 +1,117 @@
#!/usr/bin/env Rscript
# Didn't end up using it: sorted it at the source
# .py script to combine all dfs to output all_params
#################################################################
# TASK: Script to add all other dfs to merged_df2 and merged_df3
#################################################################
# Combine other dfs:
# dynamut_df, dynamut2_df, mcsm_na_df,
# perhaps : deepddg and mcsm ppi (for embb)
################################################################
# read other files
infilename_dynamut = paste0("~/git/Data/", drug, "/output/dynamut_results/", gene
, "_complex_dynamut_norm.csv")
infilename_dynamut2 = paste0("~/git/Data/", drug, "/output/dynamut_results/dynamut2/", gene
, "_complex_dynamut2_norm.csv")
infilename_mcsm_na = paste0("~/git/Data/", drug, "/output/mcsm_na_results/", gene
, "_complex_mcsm_na_norm.csv")
infilename_mcsm_f_snps <- paste0("~/git/Data/", drug, "/output/", gene
, "_mcsm_formatted_snps.csv")
dynamut_df = read.csv(infilename_dynamut)
dynamut2_df = read.csv(infilename_dynamut2)
mcsm_na_df = read.csv(infilename_mcsm_na)
mcsm_f_snps = read.csv(infilename_mcsm_f_snps, header = F)
names(mcsm_f_snps) = "mutationinformation"
#=================================
# check with intersect to find the common col, but use
c1 = length(intersect(names(dynamut_df), names(dynamut2_df)))
c2 = length(intersect(names(dynamut2_df), names(mcsm_na_df)))
if (c1 == 1 && c2 == 1) {
n_common = 1
}else{
cat("\nMore than one common col found, inspect before merging!")
}
# mutationinformation column to be on the safe side
# delete chain from dynamut2_df
#dynamut2_df = subset(dynamut2_df, select = -chain)
# quick checks
lapply(list(dynamut_df
, dynamut2_df
, mcsm_na_df), ncol)
lapply(list(dynamut_df
, dynamut2_df
, mcsm_na_df), colnames)
lapply(list(dynamut_df
, dynamut2_df
, mcsm_na_df), nrow)
ncols_comb = lapply(list(dynamut_df
, dynamut2_df
, mcsm_na_df), ncol)
#---------------------------------
# Combine 1: all other params dfs
#---------------------------------
combined_dfs = Reduce(inner_join, list(dynamut_df
, dynamut2_df
, mcsm_na_df))
# Reduce("+", ncols_comb)
#-----------------------------------------
# Combine 2: combine1 result + merged_df2
#-----------------------------------------
drop_cols = intersect(names(combined_dfs), names(merged_df2))
drop_cols = drop_cols
drop_cols = drop_cols[! drop_cols %in% c("mutationinformation")]
combined_dfs_f = combined_dfs[, !colnames(combined_dfs)%in%drop_cols]
nrow(combined_dfs_f); nrow(merged_df2)
ncol(combined_dfs_f); ncol(merged_df2)
#-----------------------------------------
# Combined merged_df2
#-----------------------------------------
merged_df2_combined = merge(merged_df2
, combined_dfs_f
, by = "mutationinformation"
)
expected_ncols = ncol(combined_dfs_f)+ ncol(merged_df2) - 1
if ( nrow(merged_df2_combined) == nrow(merged_df2) && ncol(merged_df2_combined) == expected_ncols ){
cat("\nPASS: merged_df2 combined with other parameters dfs."
, "\nUse this for lineage distribution plots")
}else{
cat("\nFAIL: merged_df2 didn't combine successfully with other parameters dfs")
quit()
}
rm(combined_dfs, combined_dfs_f)
#================================
# combined data
# short_df ps: ~ merged_df3
# TODO: later integrate properly
#================================
#-----------------------------------------
# Combined merged_df2
#-----------------------------------------
merged_df3_combined = merged_df2_combined[!duplicated(merged_df2_combined$mutationinformation),]

View file

@ -0,0 +1,470 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Script to format data for dm om plots:
# generating LF data
# sourced by get_plotting_dfs.R
#########################################################
# working dir and loading libraries
# getwd()
# setwd("~/git/LSHTM_analysis/scripts/plotting")
# getwd()
# make cmd
# globals
# drug = "streptomycin"
# gene = "gid"
# source("get_plotting_dfs.R")
#=======================================================================
# MOVE TO COMBINE or singular file for deepddg
#
# cols_to_select = c("mutation", "mutationinformation"
# , "wild_type", "position", "mutant_type"
# , "mutation_info")
#
# merged_df3_short = merged_df3[, cols_to_select]
# infilename_mcsm_f_snps <- paste0("~/git/Data/", drug, "/output/", gene
# , "_mcsm_formatted_snps.csv")
#
# mcsm_f_snps<- read.csv(infilename_mcsm_f_snps, header = F)
# names(mcsm_f_snps) <- "mutationinformation"
# write merged_df3 to generate structural figure on chimera
#write.csv(merged_df3_short, "merged_df3_short.csv")
#========================================================================
#========================================================================
# cols to select
cols_mcsm_df <- merged_df3[, c("mutationinformation", "mutation"
, "mutation_info", "position"
, LigDist_colname
, "duet_stability_change", "duet_scaled", "duet_outcome"
, "ligand_affinity_change", "affinity_scaled", "ligand_outcome"
, "ddg_foldx", "foldx_scaled", "foldx_outcome"
, "deepddg", "deepddg_scaled", "deepddg_outcome"
, "asa", "rsa"
, "rd_values", "kd_values"
, "log10_or_mychisq", "neglog_pval_fisher", "af")]
cols_mcsm_na_df <- mcsm_na_df[, c("mutationinformation"
, "mcsm_na_affinity", "mcsm_na_scaled"
, "mcsm_na_outcome")]
# entire dynamut_df
cols_dynamut2_df <- dynamut2_df[, c("mutationinformation"
, "ddg_dynamut2", "ddg_dynamut2_scaled"
, "ddg_dynamut2_outcome")]
n_comb_cols = length(cols_mcsm_df) + length(cols_mcsm_na_df) +
length(dynamut_df) + length(cols_dynamut2_df); n_comb_cols
i1<- intersect(names(cols_mcsm_df), names(cols_mcsm_na_df))
i2<- intersect(names(dynamut_df), names(cols_dynamut2_df))
merging_cols <- intersect(i1, i2)
cat("\nmerging_cols:", merging_cols)
if (merging_cols == "mutationinformation") {
cat("\nStage 1: Found common col between dfs, checking values in it...")
c1 <- all(mcsm_f_snps[[merging_cols]]%in%cols_mcsm_df[[merging_cols]])
c2 <- all(mcsm_f_snps[[merging_cols]]%in%cols_mcsm_na_df[[merging_cols]])
c3 <- all(mcsm_f_snps[[merging_cols]]%in%dynamut_df[[merging_cols]])
c4 <- all(mcsm_f_snps[[merging_cols]]%in%cols_dynamut2_df[[merging_cols]])
cols_check <- c(c1, c2, c3, c4)
expected_cols = n_comb_cols - ( length(cols_check) - 1)
if (all(cols_check)){
cat("\nStage 2: Proceeding with merging dfs:\n")
comb_df <- Reduce(inner_join, list(cols_mcsm_df
, cols_mcsm_na_df
, dynamut_df
, cols_dynamut2_df))
comb_df_s = arrange(comb_df, position)
# if ( nrow(comb_df_s) == nrow(mcsm_f_snps) && ncol(comb_df_s) == expected_cols) {
# cat("\Stage3, PASS: dfs merged sucessfully"
# , "\nnrow of merged_df: ", nrow(comb_df_s)
# , "\nncol of merged_df:", ncol(comb_df_s))
# }
}
}
#names(comb_df_s)
cat("\n!!!IT GOT TO HERE!!!!")
#=======================================================================
fact_cols = colnames(comb_df_s)[grepl( "_outcome|_info", colnames(comb_df_s) )]
fact_cols
lapply(comb_df_s[, fact_cols], class)
comb_df_s[, fact_cols] <- lapply(comb_df_s[, fact_cols], as.factor)
if (any(lapply(comb_df_s[, fact_cols], class) == "character")){
cat("\nChanging cols to factor")
comb_df_s[, fact_cols] <- lapply(comb_df_s[, fact_cols],as.factor)
if (all(lapply(comb_df_s[, fact_cols], class) == "factor")){
cat("\nSuccessful: cols changed to factor")
}
}
lapply(comb_df_s[, fact_cols], class)
#=======================================================================
table(comb_df_s$mutation_info)
# further checks to make sure dr and other muts are indeed unique
dr_muts = comb_df_s[comb_df_s$mutation_info == dr_muts_col,]
dr_muts_names = unique(dr_muts$mutation)
other_muts = comb_df_s[comb_df_s$mutation_info == other_muts_col,]
other_muts_names = unique(other_muts$mutation)
if ( table(dr_muts_names%in%other_muts_names)[[1]] == length(dr_muts_names) &&
table(other_muts_names%in%dr_muts_names)[[1]] == length(other_muts_names) ){
cat("PASS: dr and other muts are indeed unique")
}else{
cat("FAIL: dr and others muts are NOT unique!")
quit()
}
# pretty display names i.e. labels to reduce major code duplication later
foo_cnames = data.frame(colnames(comb_df_s))
names(foo_cnames) <- "old_name"
stability_suffix <- paste0(delta_symbol, delta_symbol, "G")
flexibility_suffix <- paste0(delta_symbol, delta_symbol, "S")
lig_dn = paste0("Ligand distance (", angstroms_symbol, ")"); lig_dn
duet_dn = paste0("DUET ", stability_suffix); duet_dn
foldx_dn = paste0("FoldX ", stability_suffix); foldx_dn
deepddg_dn = paste0("Deepddg " , stability_suffix); deepddg_dn
mcsm_na_dn = paste0("mCSM-NA affinity ", stability_suffix); mcsm_na_dn
dynamut_dn = paste0("Dynamut ", stability_suffix); dynamut_dn
dynamut2_dn = paste0("Dynamut2 " , stability_suffix); dynamut2_dn
encom_ddg_dn = paste0("EnCOM " , stability_suffix); encom_ddg_dn
encom_dds_dn = paste0("EnCOM " , flexibility_suffix ); encom_dds_dn
sdm_dn = paste0("SDM " , stability_suffix); sdm_dn
mcsm_dn = paste0("mCSM " , stability_suffix ); mcsm_dn
# Change colnames of some columns using datatable
comb_df_sl = comb_df_s
names(comb_df_sl)
setnames(comb_df_sl
, old = c("asa", "rsa", "rd_values", "kd_values"
, "log10_or_mychisq", "neglog_pval_fisher", "af"
, LigDist_colname
, "duet_scaled"
, "foldx_scaled"
, "deepddg_scaled"
, "mcsm_na_scaled"
, "ddg_dynamut_scaled"
, "ddg_dynamut2_scaled"
, "ddg_encom_scaled"
, "dds_encom_scaled"
, "ddg_sdm"
, "ddg_mcsm")
, new = c("ASA", "RSA", "RD", "KD"
, "Log10 (OR)", "-Log (P)", "MAF"
, lig_dn
, duet_dn
, foldx_dn
, deepddg_dn
, mcsm_na_dn
, dynamut_dn
, dynamut2_dn
, encom_ddg_dn
, encom_dds_dn
, sdm_dn
, mcsm_dn)
)
foo_cnames <- cbind(foo_cnames, colnames(comb_df_sl))
# some more pretty labels
table(comb_df_sl$mutation_info)
levels(comb_df_sl$mutation_info)[levels(comb_df_sl$mutation_info)==dr_muts_col] <- "DM"
levels(comb_df_sl$mutation_info)[levels(comb_df_sl$mutation_info)==other_muts_col] <- "OM"
table(comb_df_sl$mutation_info)
#######################################################################
#======================
# Selecting dfs
# with appropriate cols
#=======================
static_cols_start = c("mutationinformation"
, "position"
, "mutation"
, "mutation_info")
static_cols_end = c(lig_dn
, "ASA"
, "RSA"
, "RD"
, "KD")
# ordering is important!
#########################################################################
#==============
# DUET: LF
#==============
cols_to_select_duet = c(static_cols_start, c("duet_outcome", duet_dn), static_cols_end)
wf_duet = comb_df_sl[, cols_to_select_duet]
#pivot_cols_ps = cols_to_select_ps[1:5]; pivot_cols_ps
pivot_cols_duet = cols_to_select_duet[1: (length(static_cols_start) + 1)]; pivot_cols_duet
expected_rows_lf = nrow(wf_duet) * (length(wf_duet) - length(pivot_cols_duet))
expected_rows_lf
# LF data: duet
lf_duet = gather(wf_duet
, key = param_type
, value = param_value
, all_of(duet_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_duet) == expected_rows_lf){
cat("\nPASS: long format data created for ", duet_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# FoldX: LF
#==============
cols_to_select_foldx= c(static_cols_start, c("foldx_outcome", foldx_dn), static_cols_end)
wf_foldx = comb_df_sl[, cols_to_select_foldx]
pivot_cols_foldx = cols_to_select_foldx[1: (length(static_cols_start) + 1)]; pivot_cols_foldx
expected_rows_lf = nrow(wf_foldx) * (length(wf_foldx) - length(pivot_cols_foldx))
expected_rows_lf
# LF data: duet
print("TESTXXXXXXXXXXXXXXXXXXXXX---------------------->>>>")
lf_foldx <<- gather(wf_foldx
, key = param_type
, value = param_value
, all_of(foldx_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_foldx) == expected_rows_lf){
cat("\nPASS: long format data created for ", foldx_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# Deepddg: LF
#==============
cols_to_select_deepddg = c(static_cols_start, c("deepddg_outcome", deepddg_dn), static_cols_end)
wf_deepddg = comb_df_sl[, cols_to_select_deepddg]
pivot_cols_deepddg = cols_to_select_deepddg[1: (length(static_cols_start) + 1)]; pivot_cols_deepddg
expected_rows_lf = nrow(wf_deepddg) * (length(wf_deepddg) - length(pivot_cols_deepddg))
expected_rows_lf
# LF data: duet
lf_deepddg = gather(wf_deepddg
, key = param_type
, value = param_value
, all_of(deepddg_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_deepddg) == expected_rows_lf){
cat("\nPASS: long format data created for ", deepddg_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# mCSM-NA: LF
#==============
cols_to_select_mcsm_na = c(static_cols_start, c("mcsm_na_outcome", mcsm_na_dn), static_cols_end)
wf_mcsm_na = comb_df_sl[, cols_to_select_mcsm_na]
pivot_cols_mcsm_na = cols_to_select_mcsm_na[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm_na
expected_rows_lf = nrow(wf_mcsm_na) * (length(wf_mcsm_na) - length(pivot_cols_mcsm_na))
expected_rows_lf
# LF data: duet
lf_mcsm_na = gather(wf_mcsm_na
, key = param_type
, value = param_value
, all_of(mcsm_na_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_mcsm_na) == expected_rows_lf){
cat("\nPASS: long format data created for ", mcsm_na_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# Dynamut: LF
#==============
cols_to_select_dynamut = c(static_cols_start, c("ddg_dynamut_outcome", dynamut_dn), static_cols_end)
wf_dynamut = comb_df_sl[, cols_to_select_dynamut]
pivot_cols_dynamut = cols_to_select_dynamut[1: (length(static_cols_start) + 1)]; pivot_cols_dynamut
expected_rows_lf = nrow(wf_dynamut) * (length(wf_dynamut) - length(pivot_cols_dynamut))
expected_rows_lf
# LF data: duet
lf_dynamut = gather(wf_dynamut
, key = param_type
, value = param_value
, all_of(dynamut_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_dynamut) == expected_rows_lf){
cat("\nPASS: long format data created for ", dynamut_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# Dynamut2: LF
#==============
cols_to_select_dynamut2 = c(static_cols_start, c("ddg_dynamut2_outcome", dynamut2_dn), static_cols_end)
wf_dynamut2 = comb_df_sl[, cols_to_select_dynamut2]
pivot_cols_dynamut2 = cols_to_select_dynamut2[1: (length(static_cols_start) + 1)]; pivot_cols_dynamut2
expected_rows_lf = nrow(wf_dynamut2) * (length(wf_dynamut2) - length(pivot_cols_dynamut2))
expected_rows_lf
# LF data: duet
lf_dynamut2 = gather(wf_dynamut2
, key = param_type
, value = param_value
, all_of(dynamut2_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_dynamut2) == expected_rows_lf){
cat("\nPASS: long format data created for ", dynamut2_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# EnCOM ddg: LF
#==============
cols_to_select_encomddg = c(static_cols_start, c("ddg_encom_outcome", encom_ddg_dn), static_cols_end)
wf_encomddg = comb_df_sl[, cols_to_select_encomddg]
pivot_cols_encomddg = cols_to_select_encomddg[1: (length(static_cols_start) + 1)]; pivot_cols_encomddg
expected_rows_lf = nrow(wf_encomddg ) * (length(wf_encomddg ) - length(pivot_cols_encomddg))
expected_rows_lf
# LF data: encomddg
lf_encomddg = gather(wf_encomddg
, key = param_type
, value = param_value
, all_of(encom_ddg_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_encomddg) == expected_rows_lf){
cat("\nPASS: long format data created for ", encom_ddg_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# EnCOM dds: LF
#==============
cols_to_select_encomdds = c(static_cols_start, c("dds_encom_outcome", encom_dds_dn), static_cols_end)
wf_encomdds = comb_df_sl[, cols_to_select_encomdds]
pivot_cols_encomdds = cols_to_select_encomdds[1: (length(static_cols_start) + 1)]; pivot_cols_encomdds
expected_rows_lf = nrow(wf_encomdds) * (length(wf_encomdds) - length(pivot_cols_encomdds))
expected_rows_lf
# LF data: encomddg
lf_encomdds = gather(wf_encomdds
, key = param_type
, value = param_value
, all_of(encom_dds_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_encomdds) == expected_rows_lf){
cat("\nPASS: long format data created for", encom_dds_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# SDM: LF
#==============
cols_to_select_sdm = c(static_cols_start, c("ddg_sdm_outcome", sdm_dn), static_cols_end)
wf_sdm = comb_df_sl[, cols_to_select_sdm]
pivot_cols_sdm = cols_to_select_sdm[1: (length(static_cols_start) + 1)]; pivot_cols_sdm
expected_rows_lf = nrow(wf_sdm) * (length(wf_sdm) - length(pivot_cols_sdm))
expected_rows_lf
# LF data: encomddg
lf_sdm = gather(wf_sdm
, key = param_type
, value = param_value
, all_of(sdm_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_sdm) == expected_rows_lf){
cat("\nPASS: long format data created for", sdm_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################
#==============
# mCSM: LF
#==============
cols_to_select_mcsm = c(static_cols_start, c("ddg_mcsm_outcome", mcsm_dn), static_cols_end)
wf_mcsm = comb_df_sl[, cols_to_select_mcsm]
pivot_cols_mcsm = cols_to_select_mcsm[1: (length(static_cols_start) + 1)]; pivot_cols_mcsm
expected_rows_lf = nrow(wf_mcsm) * (length(wf_mcsm) - length(pivot_cols_mcsm))
expected_rows_lf
# LF data: encomddg
lf_mcsm = gather(wf_mcsm
, key = param_type
, value = param_value
, all_of(mcsm_dn):tail(static_cols_end,1)
, factor_key = TRUE)
if (nrow(lf_mcsm) == expected_rows_lf){
cat("\nPASS: long format data created for", mcsm_dn)
}else{
cat("\nFAIL: long format data could not be created for duet")
quit()
}
############################################################################