From 3e18193a36fee20f41caac4e7c4832195c59e9f3 Mon Sep 17 00:00:00 2001 From: Tanushree Tunstall Date: Thu, 7 Jul 2022 17:46:06 +0100 Subject: [PATCH] added examples --- scripts/ml/dummy_classifier.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/scripts/ml/dummy_classifier.py b/scripts/ml/dummy_classifier.py index e084fd5..bbc4015 100644 --- a/scripts/ml/dummy_classifier.py +++ b/scripts/ml/dummy_classifier.py @@ -12,17 +12,29 @@ from sklearn.dummy import DummyClassifier X_eg = np.array([-1, 1, 1, 1]) y_eg = np.array([0, 1, 1, 1]) dummy_clf = DummyClassifier(strategy="most_frequent") +dummy_clf = DummyClassifier(strategy="stratified") +dummy_clf = DummyClassifier(strategy="stratified") + dummy_clf.fit(X_eg, y_eg) -DummyClassifier(strategy='most_frequent') +#DummyClassifier(strategy='most_frequent') dummy_clf.predict(X_eg) -np.array([1, 1, 1, 1]) +dummy_clf.predict(np.array([1,1,1,1,1,1,1,1,1,1])) +dummy_clf.predict_proba(X_eg) + dummy_clf.score(X_eg, y_eg) 0.75 -dummy_clf.matthews_corrcoef(X_eg, y_eg) +df2['X'] +dummy_clf.fit(df2['X'], df2['y']) +dummy_clf.predict(df2['X']) +dummy_clf.predict_proba(df2['X']) +ypred = dummy_clf.predict(df2['X']) +dummy_clf.score(df2['X'], df2['y']) +confusion_matrix(df2['y'], ypred) +matthews_corrcoef(df2['y'], ypred) #%% df['dst_mode'] y_all_tt = df.loc[:,'dst']