updated docs for dm_om_data.R

This commit is contained in:
Tanushree Tunstall 2022-02-01 16:23:03 +00:00
parent e795c00831
commit 3d45780c1a
4 changed files with 54 additions and 179 deletions

View file

@ -1,128 +0,0 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Script to format data for Correlation plots:
# corr_data_extract()
# Input:
# corr_plot_df: data with all parameters (my_use case)
# merged_df3 or merged_df2!?
# gene: [sanity check]
# drug: relates to a column name that will need to extracted
# ligand_dist_colname = LigDist_colname (variable from plotting_globals()
#colnames_to_extract = c("mutationinformation"
# , "duet_affinity_change")
#display_colnames_key = c(mutationinformation = "MUT"
# , duet_affinity_change = "DUET")
# extract_scaled_cols = T or F, so that parameters with the _scaled suffix can be extracted.
# No formatting applied to these cols i.e display name
# TO DO: SHINY
#1) Corr type?
#2)
##################################################################
corr_data_extract <- function(corr_plot_df
#, gene_name = gene
, drug_name = drug
, ligand_dist_colname = LigDist_colname
, colnames_to_extract
, colnames_display_key
, extract_scaled_cols = F){
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
#if ( missing(colnames_to_extract) ){
cat("\n=========================================="
, "\nCORR PLOTS data: ALL params"
, "\n=========================================")
cat("\nExtracting default columns for"
#, "\nGene name:", gene
, "\nDrug name:", drug)
colnames_to_extract = c(drug
#, "mutationinformation"
, "mutation_info_labels"
, "duet_stability_change"
, "ligand_affinity_change"
#, "ligand_distance"
, ligand_dist_colname
, "ddg_foldx"
, "deepddg"
, "asa"
, "rsa"
, "kd_values"
, "rd_values"
, "af"
, "log10_or_mychisq"
, "neglog_pval_fisher"
, "ddg_dynamut2"
, "consurf_score"
, "snap2_score"
, "ddg_dynamut", "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet"
, "mcsm_na_affinity"
, "mcsm_ppi2_affinity"
)
# [optional] arg: extract_scaled_cols
if (extract_scaled_cols){
cat("\nExtracting scaled columns as well...\n")
all_scaled_cols = colnames(merged_df3)[grep(".*scaled", colnames(merged_df3))]
colnames_to_extract = c(colnames_to_extract, all_scaled_cols)
}else{
colnames_to_extract = colnames_to_extract
}
corr_df = corr_plot_df[, colnames(corr_plot_df)%in%colnames_to_extract]
# arg: colnames_display_key
colnames_display_key = c(duet_stability_change = "DUET"
, ligand_affinity_change = "mCSM-lig"
#, ligand_distance = "ligand_distance"
#, ligand_dist_colname = "ligand_distance"
, ddg_foldx = "FoldX"
, deepddg = "DeepDDG"
, asa = "ASA"
, rsa = "RSA"
, kd_values = "KD"
, rd_values = "RD"
, af = "MAF"
, log10_or_mychisq = "Log (OR)"
, neglog_pval_fisher = "-Log (P)"
, ddg_dynamut2 = "Dynamut2"
, consurf_score = "Consurf"
, snap2_score = "SNAP2"
, ddg_dynamut = "Dynamut"
, ddg_encom = "ENCoM-DDG"
, ddg_mcsm = "mCSM"
, ddg_sdm = "SDM"
, ddg_duet = "DUET-d"
, dds_encom = "ENCoM-DDS"
, mcsm_na_affinity = "mCSM-NA"
, mcsm_ppi2_affinity = "mCSM-PPI2")
# COMMENT: This only works when all the columns are in the namekey vector.
# If one is missing, there is no error, but it also renamed as "NA.
#names(corr_df) <- colnames_display_key[names(corr_df)]
# Solution: to use plyr::rename()
# Consider using requireNamespace() instead of library() so its function names doesn't collide with dplyr's.
corr_df = plyr::rename(corr_df
, replace = colnames_display_key
, warn_missing = T
, warn_duplicated = T)
cat("\nExtracted ncols:", ncol(corr_df)
,"\nRenaming successful")
cat("\nSneak peak...")
print(head(corr_df))
# Move drug column to the end
last_col = colnames(corr_df[ncol(corr_df)])
corr_df_f = corr_df %>% dplyr::relocate(all_of(drug), .after = last_col)
return(corr_df_f)
}
}

View file

@ -1,28 +1,40 @@
#!/usr/bin/env Rscript #!/usr/bin/env Rscript
######################################################### #########################################################
# TASK: Script to format data for dm om plots: # TASK: Script to format data for dm om plots:
# generating WF and LF data for each of the parameters # generating WF and LF data for each of the parameters:
# duet, mcsm-lig, foldx, deepddg, dynamut2, mcsm-na, mcsm-ppi2, encom, dynamut..etc # duet, mcsm-lig, foldx, deepddg, dynamut2, mcsm-na, mcsm-ppi2, encom, dynamut..etc
# Called by get_plotting_dfs.R # Called by get_plotting_dfs.R
# dm_om_wf_lf_data() # dm_om_wf_lf_data()
# Input: data with all parameters (merged_df3, my_use case) # INPUT:
# df: merged_df3 (data with all parameters)
# NOTE*: merged_df2 will not be appropriate as it brings up most params as significant!?,atleast for gid
# gene: [conditional generation of dfs like mcsm-NA, mcsm-ppi2 as not all genes have all these values] # gene: [conditional generation of dfs like mcsm-NA, mcsm-ppi2 as not all genes have all these values]
# colnames_to_extract = c("mutationinformation" # colnames_to_extract : columns to extract, either user-specified.
# , "duet_affinity_change...") #By default it is c("mutationinformation" , "duet_affinity_change...")
# ligand_dist_colname = LigDist_colname # from globals # ligand_dist_colname : column name containing ligand distance. By deafult, it is LigDist_colname (imported from globals)
# dr_muts = dr_muts_col # from globals ...dr_mutations_<drug> # dr_muts : dr_muts_col (imported from globals; dr_mutations_<drug>)
# other_muts = other_muts_col # from globals ...other_mutations_<drug> # other_muts : other_muts_col (imported from globals ...other_mutations_<drug>)
# snp_colname = "mutationinformation" # snp_colname : SNP column name. By default it is "mutationinformation"
# aa_pos_colname = "position" # to sort df by # aa_pos_colname : Column name containing the aa position. This is used to sort the df by.
# mut_colname = "mutation" # mut_colname : Column name containing snp info in format "<abc_pXXdef>. By default, it is "mutation"
# mut_info_colname = "mutation_info" # mut_info_colname : Column name containing mutation info whether it is DM or OM. By default, it is "mutation_info"
# mut_info_label_colname = "mutation_info_labels" # if empty, below used # mut_info_label_colname : Column containing pre-formatted labels for mutation info.
# dr_other_muts_labels = c("DM", "OM") # only used if ^^ = "" # For my use case, this is called "mutation_info_labels"
# categ_cols_to_factor: converts the cols with '_outcome'and 'info' to factor # This column has short labels like DM and OM coresponding to dr_muts and other_muts.
# NOTE*: if this is left empty, then the arg ('dr_other_muts_labels') will be used
# dr_other_muts_labels : User specified labels, must correspond to dr_muts and other_muts.
# NOTE*: Only used if the arg (mut_info_label_colname) is empty!
# categ_cols_to_factor : Column names to convert to factors. These mainly correspond to the outcome columns associated with the
# arg ('colnames_to_extract'). These have the suffix "_outcome" in their colnames. Additionally column 'mutation_info' is also
# converted to factor. By default, it converts the cols with '_outcome'and 'info' to factor.
# Users are able to provide a vector of their corresponding column names
# RETURNS: List
# WF nd LF data grouped by mutation_info i.e DM (drug mutations) and OM (other mutations)
# TO DO: SHINY # TO DO: SHINY
#1) #1) df to choose (merged_df3 or merged_df2)
#2) #2)
################################################################## ##################################################################
dm_om_wf_lf_data <- function(df dm_om_wf_lf_data <- function(df

View file

@ -1,7 +0,0 @@
#!/usr/bin/env Rscript
source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
m3 = corr_data_extract(merged_df3); head(m3)
m2 = corr_data_extract(meregd_df2); head(m2)
m3S = corr_data_extract(merged_df3, extract_scaled_cols = T); head(m3S)

View file

@ -88,13 +88,6 @@ merged_df3 = all_plot_dfs[[2]]
merged_df2_comp = all_plot_dfs[[3]] merged_df2_comp = all_plot_dfs[[3]]
merged_df3_comp = all_plot_dfs[[4]] merged_df3_comp = all_plot_dfs[[4]]
#====================================================================== #======================================================================
####################################################################
# Data for combining other dfs
####################################################################
#source("other_dfs_data.R")
# Fixed this at source i.e python script
# Moved: "other_dfs_data.R" to redundant/
#################################################################### ####################################################################
# Data for subcols barplot (~heatmap) # Data for subcols barplot (~heatmap)
@ -109,35 +102,39 @@ merged_df3_comp = all_plot_dfs[[4]]
# Data for logoplots # Data for logoplots
#################################################################### ####################################################################
#source(paste0(plot_script_path, "logo_data.R")) #source(paste0(plot_script_path, "logo_data_msa.R"))
#s1 = c("\nSuccessfully sourced logo_data.R") #s1 = c("\nSuccessfully sourced logo_data_msa.R")
#cat(s1) #cat(s1)
# input data is merged_df3
# so repurposed it into a function so params can be passed instead to generate
# data required for plotting.
# Moved "logo_data.R" to redundant/
source(paste0(plot_script_path, "logo_data_msa.R"))
s1 = c("\nSuccessfully sourced logo_data_msa.R")
cat(s1)
#################################################################### ####################################################################
# Data for DM OM Plots: WF and LF dfs # Data for DM OM Plots: WF and LF dfs
# My function: dm_om_wf_lf_data() # My function: dm_om_wf_lf_data()
#################################################################### # location: scripts/functions/dm_om_data.R
#source("other_plots_data.R") #source("other_plots_data.R")
# converted to a function ####################################################################
# moved old one to redundant.
source(paste0(plot_script_path, "dm_om_data.R"))
s2 = c("\nSuccessfully sourced other_plots_data.R") #source(paste0(plot_script_path, "dm_om_data.R"))
cat(s2) #s2 = c("\nSuccessfully sourced other_plots_data.R")
#cat(s2)
#################################################################### ####################################################################
# Data for Lineage barplots: WF and LF dfs # Data for Lineage barplots: WF and LF dfs
# My function: lineage_plot_data()
# location: scripts/functions/lineage_plot_data.R
#################################################################### ####################################################################
source(paste0(plot_script_path, "lineage_data.R")) #source(paste0(plot_script_path, "lineage_data.R"))
# converted to a function. Moved lineage_data.R to redundant/
lineage_dfL = lineage_plot_data(df = merged_df2
, lineage_column_name = "lineage"
, remove_empty_lineage = F
, lineage_label_col_name = "lineage_labels"
, id_colname = "id"
, snp_colname = "mutationinformation"
)
lin_wf = lineage_dfL[['lin_wf']]
lin_lf = lineage_dfL[['lin_lf']]
s3 = c("\nSuccessfully sourced lineage_data.R") s3 = c("\nSuccessfully sourced lineage_data.R")
cat(s3) cat(s3)
@ -145,6 +142,7 @@ cat(s3)
#################################################################### ####################################################################
# Data for corr plots: # Data for corr plots:
# My function: corr_data_extract() # My function: corr_data_extract()
# location: scripts/functions/corr_plot_data.R
#################################################################### ####################################################################
# make sure the above script works because merged_df2_combined is needed # make sure the above script works because merged_df2_combined is needed