tidying script
This commit is contained in:
parent
b82cc11dbe
commit
3c6122a296
1 changed files with 133 additions and 197 deletions
|
@ -30,41 +30,46 @@ os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
||||||
os.getcwd()
|
os.getcwd()
|
||||||
|
|
||||||
# local import
|
# local import
|
||||||
from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
|
#from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
|
||||||
|
from reference_dict import low_3letter_dict
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% command line args
|
#%% command line args
|
||||||
arg_parser = argparse.ArgumentParser()
|
#arg_parser = argparse.ArgumentParser()
|
||||||
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = 'pyrazinamide')
|
#arg_parser.add_argument('-d', '--drug', help = 'drug name', default = 'pyrazinamide')
|
||||||
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = 'pncA') # case sensitive
|
#arg_parser.add_argument('-g', '--gene', help = 'gene name', default = 'pncA') # case sensitive
|
||||||
args = arg_parser.parse_args()
|
#args = arg_parser.parse_args()
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% variable assignment: input and output
|
#%% variable assignment: input and output
|
||||||
#drug = 'pyrazinamide'
|
drug = 'pyrazinamide'
|
||||||
#gene = 'pncA'
|
gene = 'pncA'
|
||||||
#gene_match = gene + '_p.'
|
gene_match = gene + '_p.'
|
||||||
|
|
||||||
# cmd variables
|
# cmd variables
|
||||||
drug = args.drug
|
#drug = args.drug
|
||||||
gene = args.gene
|
#gene = args.gene
|
||||||
gene_match = gene + '_p.'
|
#gene_match = gene + '_p.'
|
||||||
|
|
||||||
#==========
|
#==========
|
||||||
# dir
|
# dir
|
||||||
#==========
|
#==========
|
||||||
datadir = homedir + '/' + 'git/Data'
|
datadir = homedir + '/' + 'git/Data'
|
||||||
|
indir = datadir + '/' + drug + '/' + 'input'
|
||||||
outdir = datadir + '/' + drug + '/' + 'output'
|
outdir = datadir + '/' + drug + '/' + 'output'
|
||||||
|
|
||||||
#=======
|
#=======
|
||||||
# input
|
# input
|
||||||
#=======
|
#=======
|
||||||
|
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
|
||||||
in_filename_afor = gene.lower() + '_af_or.csv'
|
in_filename_afor = gene.lower() + '_af_or.csv'
|
||||||
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
|
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
|
||||||
|
|
||||||
|
infile0 = indir + '/' + in_filename_snpinfo
|
||||||
infile1 = outdir + '/' + in_filename_afor
|
infile1 = outdir + '/' + in_filename_afor
|
||||||
infile2 = outdir + '/' + in_filename_afor_kin
|
infile2 = outdir + '/' + in_filename_afor_kin
|
||||||
|
|
||||||
|
|
||||||
print('Input file1:', infile1
|
print('Input file0:', infile0
|
||||||
|
, '\nInput file1:', infile1
|
||||||
, '\nInput file2:', infile2
|
, '\nInput file2:', infile2
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
@ -77,7 +82,7 @@ print('Output file:', outfile
|
||||||
, '\n===================================================================')
|
, '\n===================================================================')
|
||||||
|
|
||||||
|
|
||||||
del(in_filename_afor, in_filename_afor_kin, datadir, outdir)
|
del(in_filename_afor, in_filename_afor_kin, datadir, indir, outdir)
|
||||||
#%% end of variable assignment for input and output files
|
#%% end of variable assignment for input and output files
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% format mutations
|
#%% format mutations
|
||||||
|
@ -86,211 +91,142 @@ del(in_filename_afor, in_filename_afor_kin, datadir, outdir)
|
||||||
#========================
|
#========================
|
||||||
# read input csv files to combine
|
# read input csv files to combine
|
||||||
#========================
|
#========================
|
||||||
|
snpinfo_df = pd.read_csv(infile0, sep = ',')
|
||||||
|
snpinfo_ncols = len(snpinfo_df.columns)
|
||||||
|
snpinfo_nrows = len(snpinfo_df)
|
||||||
|
print('No. of rows in', infile0, ':', snpinfo_nrows
|
||||||
|
, '\nNo. of cols in', infile0, ':', snpinfo_ncols)
|
||||||
|
|
||||||
afor_df = pd.read_csv(infile1, sep = ',')
|
afor_df = pd.read_csv(infile1, sep = ',')
|
||||||
afor_df_ncols = len(afor_df.columns)
|
afor_ncols = len(afor_df.columns)
|
||||||
afor_df_nrows = len(afor_df)
|
afor_nrows = len(afor_df)
|
||||||
print('No. of rows in', infile1, ':', afor_df_nrows
|
print('No. of rows in', infile1, ':', afor_nrows
|
||||||
, '\nNo. of cols in', infile1, ':', afor_df_ncols)
|
, '\nNo. of cols in', infile1, ':', afor_ncols)
|
||||||
|
|
||||||
afor_kin_df = pd.read_csv(infile2, sep = ',')
|
afor_kin_df = pd.read_csv(infile2, sep = ',')
|
||||||
afor_kin_df_nrows = len(afor_kin_df)
|
afor_kin_nrows = len(afor_kin_df)
|
||||||
afor_kin_df_ncols = len(afor_kin_df.columns)
|
afor_kin_ncols = len(afor_kin_df.columns)
|
||||||
print('No. of rows in', infile2, ':', afor_kin_df_nrows
|
print('No. of rows in', infile2, ':', afor_kin_nrows
|
||||||
, '\nNo. of cols in', infile2, ':', afor_kin_df_ncols)
|
, '\nNo. of cols in', infile2, ':', afor_kin_ncols)
|
||||||
|
|
||||||
#=======
|
#%% Process afor_df
|
||||||
# Iterate through the dict, create a lookup dict i.e
|
#1) pull all snp_info so you have ref_allele, etc
|
||||||
# lookup_dict = {three_letter_code: one_letter_code}.
|
# i.e merge afor_df and snpinfo_df
|
||||||
# lookup dict should be the key and the value (you want to create a column for)
|
# find merging column
|
||||||
# Then use this to perform the mapping separetly for wild type and mutant cols.
|
|
||||||
# The three letter code is extracted using a string match match from the dataframe and then converted
|
|
||||||
# to 'pandas series'since map only works in pandas series
|
|
||||||
#=======
|
|
||||||
gene_regex = gene_match.lower()+'(\w{3})'
|
|
||||||
print('gene regex being used:', gene_regex)
|
|
||||||
|
|
||||||
# initialise a sub dict that is lookup dict for three letter code to 1-letter code
|
left_df = afor_df.copy()
|
||||||
# adding three more cols
|
left_df_nrows = len(left_df)
|
||||||
lookup_dict = dict()
|
left_df_ncols = len(left_df.columns)
|
||||||
for k, v in my_aa_dict.items():
|
|
||||||
lookup_dict[k] = v['one_letter_code']
|
|
||||||
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
|
|
||||||
wt = afor_df['mutation'].str.extract(gene_regex).squeeze()
|
|
||||||
afor_df['wild_type'] = wt.map(lookup_dict)
|
|
||||||
mut = afor_df['mutation'].str.extract('\d+(\w{3})$').squeeze()
|
|
||||||
afor_df['mutant_type'] = mut.map(lookup_dict)
|
|
||||||
|
|
||||||
# extract position info from mutation column separetly using string match
|
right_df = snpinfo_df.copy()
|
||||||
afor_df['position'] = afor_df['mutation'].str.extract(r'(\d+)')
|
right_df_nrows = len(right_df)
|
||||||
|
right_df_ncols = len(right_df.columns)
|
||||||
|
|
||||||
# combine the wild_type+poistion+mutant_type columns to generate
|
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
|
||||||
# mutationinformation (matches mCSM output field)
|
print('Length of common cols:', len(common_cols)
|
||||||
# Remember to use .map(str) for int col types to allow string concatenation
|
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
|
||||||
|
|
||||||
afor_df['mutationinformation'] = afor_df['wild_type'] + afor_df['position'].map(str) + afor_df['mutant_type']
|
print('selecting consistent dtypes for merging (object i.e string)')
|
||||||
print('Created column: mutationinformation'
|
#https://stackoverflow.com/questions/44639772/python-pandas-column-dtype-object-causing-merge-to-fail-with-dtypewarning-colu
|
||||||
, '\n====================================================================='
|
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
|
||||||
, afor_df['mutationinformation'].head(10))
|
print(merging_cols)
|
||||||
|
nmerging_cols = len(merging_cols)
|
||||||
|
print(' length of merging cols:', nmerging_cols
|
||||||
|
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
|
||||||
|
|
||||||
# sanity check
|
# drop duplicates else the expected rows don't match
|
||||||
ncols_add = 4 # beware of hardcoding (3 cols for mcsm style mut + 1 for concatenating them all)
|
print('Checking for duplicates in common col:', common_cols
|
||||||
if len(afor_df.columns) == afor_df_ncols + ncols_add:
|
, '\nNo of duplicates:'
|
||||||
afor_df_ncols = len(afor_df.columns) # update afor_df_ncols after adding cols
|
, len(right_df[right_df.duplicated(common_cols)])
|
||||||
print('PASS: successfully added', ncols_add, 'cols'
|
, '\noriginal length:', right_df_nrows)
|
||||||
, '\nold length:', afor_df_ncols
|
|
||||||
, '\nnew length:', len(afor_df.columns))
|
|
||||||
else:
|
|
||||||
print('FAIL: failed to add cols:'
|
|
||||||
, '\nExpected cols:', afor_df_ncols + ncols_add
|
|
||||||
, '\nGot:', len(afor_df.columns))
|
|
||||||
sys.exit()
|
|
||||||
#%% Detect mutation format to see if you apply this func
|
|
||||||
# FIXME
|
|
||||||
#afor_df.iloc[[0]].str.match('pnca_')
|
|
||||||
#afor_df.dtypes
|
|
||||||
|
|
||||||
#foo = afor_df.loc[:, afor_df.dtypes == object]
|
right_df = right_df[~right_df.duplicated(common_cols)]
|
||||||
|
right_df_nrows = len(right_df)
|
||||||
genomic_mut_regex = gene_match.lower()+'\w{3}\d+\w{3}'
|
print('\nrevised length:', right_df_nrows)
|
||||||
print('gene regex being used:', genomic_mut_regex)
|
|
||||||
afor_df[(afor_df == genomic_mut_regex).any(axis = 1)]
|
|
||||||
|
|
||||||
#%% Finding common col to merge on
|
|
||||||
# Define merging column: multiple cols have been used for merge else the common cols
|
|
||||||
# get suffixes '_x' and '_y' attached
|
|
||||||
# also, couldn't include 'position' in merging_cols since data types don't match
|
|
||||||
merging_cols = ['wild_type', 'mutant_type', 'mutationinformation']
|
|
||||||
ncommon_cols= len(merging_cols)
|
|
||||||
|
|
||||||
# checking cross-over of mutations in the two dfs to merge
|
# checking cross-over of mutations in the two dfs to merge
|
||||||
ndiff1 = afor_kin_df_nrows - afor_df['mutationinformation'].isin(afor_kin_df['mutationinformation']).sum()
|
ndiff1 = afor_nrows - afor_df['mutation'].isin(snpinfo_df['mutation']).sum()
|
||||||
print(ndiff1)
|
print('There are', ndiff1, 'mutations with OR, but no snp_info'
|
||||||
ndiff2 = afor_kin_df_nrows - afor_kin_df['mutationinformation'].isin(afor_df['mutationinformation']).sum()
|
, '\nExtracting and writing out file')
|
||||||
print(ndiff2)
|
|
||||||
|
|
||||||
#%% combining dfs
|
#afor_df[afor_df['mutation'].isin(snpinfo_df['mutation'])]
|
||||||
|
missing_mutinfo = afor_df[~afor_df['mutation'].isin(snpinfo_df['mutation'])]
|
||||||
|
#len(missing_mutinfo.duplicated(common_cols))
|
||||||
|
|
||||||
|
#missing_mutinfo.to_csv('infoless_muts.csv')
|
||||||
|
|
||||||
|
ndiff2 = snpinfo_nrows - snpinfo_df['mutation'].isin(afor_df['mutation']).sum()
|
||||||
|
print('There are', ndiff2, 'mutations that do not have OR, but have snp_info')
|
||||||
|
|
||||||
# Define join type
|
# Define join type
|
||||||
#my_join = 'inner'
|
#my_join = 'inner'
|
||||||
|
#my_join = 'outer'
|
||||||
#my_join = 'right'
|
#my_join = 'right'
|
||||||
#my_join = 'left'
|
my_join = 'left'
|
||||||
my_join = 'outer'
|
|
||||||
|
print('combing with join:', my_join)
|
||||||
|
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||||
|
print('nrows:', len(combined_df1)
|
||||||
|
, '\nshape:', combined_df1.shape)
|
||||||
|
|
||||||
|
# inner = 252
|
||||||
|
left_df_nrows - ndiff1
|
||||||
|
|
||||||
|
# outer = 331
|
||||||
|
right_df_nrows + ndiff1
|
||||||
|
|
||||||
|
# right = 290
|
||||||
|
right_df_nrows
|
||||||
|
|
||||||
|
# left = 293
|
||||||
|
left_df_nrows
|
||||||
|
|
||||||
|
|
||||||
|
#%%
|
||||||
|
# see if you want an extra clause here!
|
||||||
|
# Define join type
|
||||||
|
#my_join = 'inner'
|
||||||
|
#my_join = 'outer'
|
||||||
|
#my_join = 'right'
|
||||||
|
my_join = 'left'
|
||||||
|
|
||||||
fail = False
|
fail = False
|
||||||
# sanity check: how many muts from afor_kin_df are in afor_df. should be a complete subset
|
print('combing with:', my_join)
|
||||||
if ndiff2 == 0:
|
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
|
||||||
print('PASS: all muts in afor_kin_df are present in afor_df'
|
|
||||||
, '\nProceeding with combining the dfs...')
|
|
||||||
|
|
||||||
combined_df = pd.merge(afor_df, afor_kin_df, on = merging_cols, how = my_join)
|
if my_join == 'inner':
|
||||||
|
#expected_rows = left_df_nrows - ndiff1
|
||||||
|
expected_rows = left_df.shape[0] - ndiff1
|
||||||
|
|
||||||
if my_join == ('outer' or 'left') :
|
if my_join == 'outer':
|
||||||
print('combing with:', my_join)
|
#expected_rows = right_df_nrows + ndiff1
|
||||||
expected_rows = afor_df_nrows + ndiff1
|
expected_rows = right_df.shape[0] + ndiff1
|
||||||
|
|
||||||
if my_join == ('inner' or 'right'):
|
if my_join == 'right':
|
||||||
print('combing with:', my_join)
|
#expected_rows = right_df_nrows
|
||||||
expected_rows = afor_kin_df_nrows
|
expected_rows = right_df.shape[0]
|
||||||
|
|
||||||
expected_cols = afor_df_ncols + afor_kin_df_ncols - ncommon_cols
|
if my_join == 'left':
|
||||||
|
#expected_rows = left_df_nrows
|
||||||
|
expected_rows = left_df.shape[0]
|
||||||
|
|
||||||
if len(combined_df) == expected_rows and len(combined_df.columns) == expected_cols:
|
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
|
||||||
print('PASS: successfully combined dfs with:', my_join, 'join')
|
|
||||||
else:
|
|
||||||
print('FAIL: combined_df\'s expected rows and cols not matched')
|
|
||||||
fail = True # BAD practice! just a placeholder to avoid code duplication
|
|
||||||
|
|
||||||
print('\nExpected no. of rows:', expected_rows
|
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
|
||||||
, '\nGot:', len(combined_df)
|
print('PASS: successfully combined dfs with:', my_join, 'join')
|
||||||
, '\nExpected no. of cols:', expected_cols
|
|
||||||
, '\nGot:', len(combined_df.columns))
|
|
||||||
if fail:
|
|
||||||
sys.exit('ERROR: combined_df may be incorrectly combined')
|
|
||||||
else:
|
else:
|
||||||
print('FAIL: numbers mismatch, mutations present in afor_kin_df but not in afor_df')
|
print('FAIL: combined_df\'s expected rows and cols not matched')
|
||||||
sys.exit('ERROR: Not all mutations in the kinship_df are present in the df with other ORs')
|
fail = True
|
||||||
|
print('\nExpected no. of rows:', expected_rows
|
||||||
#%% check duplicate cols: ones containing suffix '_x' or '_y'
|
, '\nGot:', len(combined_df1)
|
||||||
# should only be position
|
, '\nExpected no. of cols:', expected_cols
|
||||||
foo = combined_df.filter(regex = r'.*_x|_y', axis = 1)
|
, '\nGot:', len(combined_df1.columns))
|
||||||
print(foo.columns) # should only be position
|
if fail:
|
||||||
|
sys.exit()
|
||||||
# drop position col containing suffix '_y' and then rename col without suffix
|
|
||||||
combined_or_df = combined_df.drop(combined_df.filter(regex = r'.*_y').columns, axis = 1)
|
|
||||||
combined_or_df['position_x'].head()
|
|
||||||
|
|
||||||
# renaming columns
|
|
||||||
combined_or_df.rename(columns = {'position_x': 'position'}, inplace = True)
|
|
||||||
combined_or_df['position'].head()
|
|
||||||
|
|
||||||
# recheck
|
|
||||||
foo = combined_or_df.filter(regex = r'.*_x|_y', axis = 1)
|
|
||||||
print(foo.columns) # should only be empty
|
|
||||||
|
|
||||||
#%% rearraging columns
|
|
||||||
print('Dim of df prefromatting:', combined_or_df.shape)
|
|
||||||
|
|
||||||
print(combined_or_df.columns)
|
|
||||||
|
|
||||||
|
|
||||||
#%% reorder columns
|
|
||||||
#https://stackoverflow.com/questions/13148429/how-to-change-the-order-of-dataframe-columns
|
|
||||||
|
|
||||||
# setting column's order
|
|
||||||
output_df = combined_or_df[['mutation',
|
|
||||||
'mutationinformation',
|
|
||||||
'wild_type',
|
|
||||||
'position',
|
|
||||||
'mutant_type',
|
|
||||||
'chr_num_allele',
|
|
||||||
'ref_allele',
|
|
||||||
'alt_allele',
|
|
||||||
'mut_info',
|
|
||||||
'mut_type',
|
|
||||||
'gene_id',
|
|
||||||
'gene_number',
|
|
||||||
'mut_region',
|
|
||||||
'reference_allele',
|
|
||||||
'alternate_allele',
|
|
||||||
'chromosome_number',
|
|
||||||
'af',
|
|
||||||
'af_kin',
|
|
||||||
'or_kin',
|
|
||||||
'or_logistic',
|
|
||||||
'or_mychisq',
|
|
||||||
'est_chisq',
|
|
||||||
'or_fisher',
|
|
||||||
'ci_low_logistic',
|
|
||||||
'ci_hi_logistic',
|
|
||||||
'ci_low_fisher',
|
|
||||||
'ci_hi_fisher',
|
|
||||||
'pwald_kin',
|
|
||||||
'pval_logistic',
|
|
||||||
'pval_fisher',
|
|
||||||
'pval_chisq',
|
|
||||||
'beta_logistic',
|
|
||||||
'beta_kin',
|
|
||||||
'se_logistic',
|
|
||||||
'se_kin',
|
|
||||||
'zval_logistic',
|
|
||||||
'logl_H1_kin',
|
|
||||||
'l_remle_kin',
|
|
||||||
'n_diff',
|
|
||||||
'tot_diff',
|
|
||||||
'n_miss']]
|
|
||||||
|
|
||||||
# sanity check after rearranging
|
|
||||||
|
|
||||||
if combined_or_df.shape == output_df.shape and set(combined_or_df.columns) == set(output_df.columns):
|
|
||||||
print('PASS: Successfully formatted df with rearranged columns')
|
|
||||||
else:
|
|
||||||
sys.exit('FAIL: something went wrong when rearranging columns!')
|
|
||||||
|
|
||||||
#%% write file
|
|
||||||
print('\n====================================================================='
|
|
||||||
, '\nWriting output file:\n', outfile
|
|
||||||
, '\nNo.of rows:', len(output_df)
|
|
||||||
, '\nNo. of cols:', len(output_df.columns))
|
|
||||||
output_df.to_csv(outfile, index = False)
|
|
||||||
|
|
||||||
|
# update nrows and ncols
|
||||||
|
afor_info_nrows = len(afor_info_df)
|
||||||
|
afor_info_ncols = len(afor_info_df.columns)
|
||||||
|
#%%
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue