wideP_consurf3

This commit is contained in:
Tanushree Tunstall 2022-08-10 14:08:40 +01:00
parent 0bcbb44ae5
commit 3af11ec3d3

View file

@ -1,29 +1,29 @@
#####################################################################################
# LogoPlotMSA():
# Input:
# Data:
# msaSeq_mut: MSA chr vector for muts
# msaSeq_wt: MSA chr vector for wt
# Data:
# msaSeq_mut: MSA chr vector for muts
# msaSeq_wt: MSA chr vector for wt
# Logo type params:
# logo_type = c("EDLogo", "bits_pfm", "probability_pfm", "bits_raw", "probability_raw")
# EDLogo: calculated from the Logolas package based on PFM matrix (scaled).
#The required content from the package is sourced locally within 'my_logolas.R'
# bits_pfm: Information Content based on PFM scaled matrix (my_logolas.R)
# probability_pfm: Probability based on PFM scaled matrix (my_logolas.R)
# bits_raw: Information Content based on Raw MSA (ggseqlogo)
# probability_raw: Probability based on Raw MSA (ggseqlogo)
# Logo type params:
# logo_type = c("EDLogo", "bits_pfm", "probability_pfm", "bits_raw", "probability_raw")
# EDLogo: calculated from the Logolas package based on PFM matrix (scaled).
#The required content from the package is sourced locally within 'my_logolas.R'
# bits_pfm: Information Content based on PFM scaled matrix (my_logolas.R)
# probability_pfm: Probability based on PFM scaled matrix (my_logolas.R)
# bits_raw: Information Content based on Raw MSA (ggseqlogo)
# probability_raw: Probability based on Raw MSA (ggseqlogo)
# EDScore_type = c("log", log-odds", "diff", "probKL", "ratio", "unscaled_log", "wKL")
# bg_prob: background probability, default is equal i.e NULL.
# This is used by the internal call to DataED_PFM(). This func takes thse args. I have used it here for
# completeness and allow nuanced plot control
# EDScore_type = c("log", log-odds", "diff", "probKL", "ratio", "unscaled_log", "wKL")
# bg_prob: background probability, default is equal i.e NULL.
# This is used by the internal call to DataED_PFM(). This func takes thse args. I have used it here for
# completeness and allow nuanced plot control
# my_logo_col = c("chemistry", "hydrophobicity", "clustalx", "taylor")
# --> if clustalx and taylor, set variable to black bg + white font
# --> if chemistry and hydrophobicity, then grey bg + black font
# my_logo_col = c("chemistry", "hydrophobicity", "clustalx", "taylor")
# --> if clustalx and taylor, set variable to black bg + white font
# --> if chemistry and hydrophobicity, then grey bg + black font
# ...other params
# ...other params
# Returns: Logo plots from MSA both mutant and wt (for comparability)
# For my case, I always use it as it helps see what is at the wild-type already!
@ -62,7 +62,7 @@ LogoPlotMSA <- function(unified_msa
, leg_dir = "horizontal" #can be vertical or horizontal
, leg_ts = 16 # leg text size
, leg_tts = 16 # leg title size
)
)
{
# FIXME: Hack!
@ -71,7 +71,7 @@ LogoPlotMSA <- function(unified_msa
msaSeq_mut=unified_msa[['msa_seq']]
msaSeq_wt=unified_msa[['wt_seq']]
# Get PFM matrix for mut and wt MSA provided
# Get PFM matrix for mut and wt MSA provided
data_ed = DataED_PFM(msaSeq_mut
, msaSeq_wt
, ED_score = EDScore_type)
@ -163,7 +163,7 @@ LogoPlotMSA <- function(unified_msa
wt_interimDF = data.frame(wt_interim)
wt_pos = as.numeric(rownames(wt_interimDF))
}
}
if (logo_type == "probability_raw"){
msa_method = "probability"
@ -186,126 +186,126 @@ LogoPlotMSA <- function(unified_msa
if(missing(plot_positions)){
#================================
# NO filtering of positions
#================================
#---------
# MSA mut
#---------
cat("\n==========================================="
, "\nGenerated PFM mut: No filtering"
, "\n===========================================")
#================================
# NO filtering of positions
#================================
#---------
# MSA mut
#---------
cat("\n==========================================="
, "\nGenerated PFM mut: No filtering"
, "\n===========================================")
plot_mut_edM = data_logo_mut
plot_mut_edM = data_logo_mut
#---------
# MSA WT
#---------
cat("\n==========================================="
, "\nGenerated PFM WT: No filtering"
, "\n===========================================")
#---------
# MSA WT
#---------
cat("\n==========================================="
, "\nGenerated PFM WT: No filtering"
, "\n===========================================")
plot_wt_edM = data_logo_wt
plot_wt_edM = data_logo_wt
}else{
#================================
# Filtering of positions
#================================
cat("\n==========================================="
, "\nGenerating PFM MSA: filtered positions"
, "\n==========================================="
, "\nUser specified plotting positions for MSA:"
, "\nThese are:\n", plot_positions
, "\nSorting plot positions...")
#================================
# Filtering of positions
#================================
cat("\n==========================================="
, "\nGenerating PFM MSA: filtered positions"
, "\n==========================================="
, "\nUser specified plotting positions for MSA:"
, "\nThese are:\n", plot_positions
, "\nSorting plot positions...")
plot_positions = sort(plot_positions)
plot_positions = sort(plot_positions)
cat("\nPlotting positions sorted:\n"
, plot_positions)
cat("\nPlotting positions sorted:\n"
, plot_positions)
if ( all(plot_positions%in%msa_pos) && all(plot_positions%in%wt_pos) ){
cat("\nAll positions within range"
, "\nFiltering positions as specified..."
, "\nNo. of positions in plot:", length(plot_positions))
i_extract = plot_positions
if ( all(plot_positions%in%msa_pos) && all(plot_positions%in%wt_pos) ){
cat("\nAll positions within range"
, "\nFiltering positions as specified..."
, "\nNo. of positions in plot:", length(plot_positions))
i_extract = plot_positions
#-----------------
# PFM: mut + wt
#------------------
if (logo_type%in%c("EDLogo", "bits_pfm", "probability_pfm")){
#-----------------
# PFM: mut + wt
#------------------
if (logo_type%in%c("EDLogo", "bits_pfm", "probability_pfm")){
plot_mut_edM = data_logo_mut[, i_extract]
plot_wt_edM = data_logo_wt[, i_extract]
plot_mut_edM = data_logo_mut[, i_extract]
plot_wt_edM = data_logo_wt[, i_extract]
}
if (logo_type%in%c("bits_raw", "probability_raw")){
#--------
# Mut
#--------
dfP1 = msa_interimDF[i_extract,]
dfP1 = data.frame(t(dfP1))
names(dfP1) = i_extract
cols_to_paste = names(dfP1)
dfP1['chosen_seq'] = apply(dfP1[, cols_to_paste]
, 1
, paste, sep = ''
, collapse = "")
plot_mut_edM = dfP1$chosen_seq
#--------
# WT
#--------
dfP2 = wt_interimDF[i_extract,]
dfP2 = data.frame(t(dfP2))
names(dfP2) = i_extract
cols_to_paste2 = names(dfP2)
dfP2['chosen_seq'] = apply( dfP2[, cols_to_paste2]
, 1
, paste, sep = ''
, collapse = "")
plot_wt_edM = dfP2$chosen_seq
}
}else{
cat("\nNo. of positions selected:", length(plot_positions))
i_ofr = plot_positions[!plot_positions%in%msa_pos]
cat("\n1 or more plot_positions out of range..."
, "\nThese are:\n", i_ofr
, "\nQuitting! Resubmit with correct plot_positions")
quit()
}
if (logo_type%in%c("bits_raw", "probability_raw")){
#--------
# Mut
#--------
dfP1 = msa_interimDF[i_extract,]
dfP1 = data.frame(t(dfP1))
names(dfP1) = i_extract
cols_to_paste = names(dfP1)
dfP1['chosen_seq'] = apply(dfP1[, cols_to_paste]
, 1
, paste, sep = ''
, collapse = "")
plot_mut_edM = dfP1$chosen_seq
#--------
# WT
#--------
dfP2 = wt_interimDF[i_extract,]
dfP2 = data.frame(t(dfP2))
names(dfP2) = i_extract
cols_to_paste2 = names(dfP2)
dfP2['chosen_seq'] = apply( dfP2[, cols_to_paste2]
, 1
, paste, sep = ''
, collapse = "")
plot_wt_edM = dfP2$chosen_seq
}
}else{
cat("\nNo. of positions selected:", length(plot_positions))
i_ofr = plot_positions[!plot_positions%in%msa_pos]
cat("\n1 or more plot_positions out of range..."
, "\nThese are:\n", i_ofr
, "\nQuitting! Resubmit with correct plot_positions")
quit()
}
}
######################################
# Generating plots for muts and wt
#####################################
if (my_logo_col %in% c('clustalx','taylor')) {
cat("\nSelected colour scheme:", my_logo_col
, "\nUsing black theme\n")
######################################
# Generating plots for muts and wt
#####################################
if (my_logo_col %in% c('clustalx','taylor')) {
cat("\nSelected colour scheme:", my_logo_col
, "\nUsing black theme\n")
theme_bgc = "black"
xfont_bgc = "white"
yfont_bgc = "white"
xtt_col = "white"
ytt_col = "white"
theme_bgc = "black"
xfont_bgc = "white"
yfont_bgc = "white"
xtt_col = "white"
ytt_col = "white"
}
if (my_logo_col %in% c('chemistry', 'hydrophobicity')) {
cat("\nstart of MSA"
, '\nSelected colour scheme:', my_logo_col
, "\nUsing grey theme")
if (my_logo_col %in% c('chemistry', 'hydrophobicity')) {
cat("\nstart of MSA"
, '\nSelected colour scheme:', my_logo_col
, "\nUsing grey theme")
theme_bgc = "grey"
xfont_bgc = "black"
yfont_bgc = "black"
xtt_col = "black"
ytt_col = "black"
theme_bgc = "grey"
xfont_bgc = "black"
yfont_bgc = "black"
xtt_col = "black"
ytt_col = "black"
}
@ -335,11 +335,11 @@ LogoPlotMSA <- function(unified_msa
, vjust = 0.4
, colour = xfont_bgc)
#, axis.text.y = element_blank()
, axis.text.y = element_text(size = y_ats
, angle = y_tangle
, hjust = 1
, vjust = -1.0
, colour = yfont_bgc)
, axis.text.y = element_text(size = y_ats
, angle = y_tangle
, hjust = 1
, vjust = -1.0
, colour = yfont_bgc)
, axis.title.x = element_text(size = x_tts
, colour = xtt_col)
, axis.title.y = element_text(size = y_tts
@ -349,14 +349,14 @@ LogoPlotMSA <- function(unified_msa
xlab(x_lab_mut)
if (missing(plot_positions)){
ed_mut_logo_P = p0 +
ed_mut_logo_P = p0 +
scale_x_discrete(breaks = msa_pos
, expand = c(x_axis_offset, 0)
, labels = msa_pos
, limits = factor(msa_pos))
}else{
ed_mut_logo_P = p0 +
ed_mut_logo_P = p0 +
scale_x_discrete(breaks = i_extract
, expand = c(x_axis_offset_filtered, 0)
, labels = i_extract
@ -366,20 +366,20 @@ LogoPlotMSA <- function(unified_msa
if (logo_type == "EDLogo"){
ed_mut_logo_P = ed_mut_logo_P +
scale_y_continuous(limits = c(ylim_low, ylim_up)
, breaks = ylim_scale
, expand = c(0, y_axis_offset)) +
geom_hline(yintercept = 0
, linetype = "solid"
, color = "grey"
, size = 1)
scale_y_continuous(limits = c(ylim_low, ylim_up)
, breaks = ylim_scale
, expand = c(0, y_axis_offset)) +
geom_hline(yintercept = 0
, linetype = "solid"
, color = "grey"
, size = 1)
}
if (missing(y_lab_mut)){
ed_mut_logo_P = ed_mut_logo_P + ylab(y_label)
} else{
ed_mut_logo_P = ed_mut_logo_P + ylab(y_lab_mut)
}
ed_mut_logo_P = ed_mut_logo_P + ylab(y_label)
} else{
ed_mut_logo_P = ed_mut_logo_P + ylab(y_lab_mut)
}
cat('\nDone: MSA plot for mutations')
#return(msa_mut_logoP)
@ -415,24 +415,24 @@ LogoPlotMSA <- function(unified_msa
, plot.background = element_rect(fill = theme_bgc)) +
ylab("") + xlab("Wild-type position")
ylab("") + xlab("Wild-type position")
if (missing(plot_positions)){
if (missing(plot_positions)){
# No y-axis needed
ed_wt_logo_P = p1 +
scale_x_discrete(breaks = wt_pos
, expand = c(x_axis_offset, 0)
, labels = wt_pos
, limits = factor(wt_pos))
}else{
# No y-axis needed
ed_wt_logo_P = p1 +
scale_x_discrete(breaks = wt_pos
, expand = c(x_axis_offset, 0)
, labels = wt_pos
, limits = factor(wt_pos))
}else{
ed_wt_logo_P = p1 +
scale_x_discrete(breaks = i_extract
, expand = c(x_axis_offset_filtered, 0)
, labels = i_extract
, limits = factor(i_extract))
}
ed_wt_logo_P = p1 +
scale_x_discrete(breaks = i_extract
, expand = c(x_axis_offset_filtered, 0)
, labels = i_extract
, limits = factor(i_extract))
}
cat('\nDone: MSA plot for WT')
#return(msa_wt_logoP)
@ -451,10 +451,11 @@ LogoPlotMSA <- function(unified_msa
#svg(LogoSNPs_combined, width = 32, height = 10)
LogoED_comb = cowplot::plot_grid(PlotlogolasL[['ed_mut_logoP']]
, PlotlogolasL[['ed_wt_logoP']]
, nrow = 2
, align = "v"
, rel_heights = c(3/4, 1/4))
, PlotlogolasL[['ed_wt_logoP']]
, nrow = 2
, align = "v"
, axis='lr'
, rel_heights = c(3/4, 1/4))
return(LogoED_comb)