initial adding of ml scripts for baseline models
This commit is contained in:
parent
f355846dae
commit
39ccd6cdf4
3 changed files with 997 additions and 0 deletions
272
scripts/ml/MultModelsCl.py
Executable file
272
scripts/ml/MultModelsCl.py
Executable file
|
@ -0,0 +1,272 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Mar 4 15:25:33 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
#%%
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
import json
|
||||
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
#%%
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target, skf_cv
|
||||
, blind_test_input_df
|
||||
, blind_test_target
|
||||
, var_type = ['numerical', 'categorical','mixed']):
|
||||
|
||||
'''
|
||||
@ param input_df: input features
|
||||
@ type: df with input features WITHOUT the target variable
|
||||
|
||||
@param target: target (or output) feature
|
||||
@type: df or np.array or Series
|
||||
|
||||
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
|
||||
@type: int or StratifiedKfold()
|
||||
|
||||
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-ho t encoder)
|
||||
@type: list
|
||||
|
||||
returns
|
||||
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
||||
'''
|
||||
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
|
||||
# Determine preprocessing steps ~ var_type
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix) ]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
# Specify multiple Classification models
|
||||
lr = LogisticRegression(**rs)
|
||||
lrcv = LogisticRegressionCV(**rs)
|
||||
gnb = GaussianNB()
|
||||
nb = BernoulliNB()
|
||||
knn = KNeighborsClassifier()
|
||||
svc = SVC(**rs)
|
||||
mlp = MLPClassifier(max_iter = 500, **rs)
|
||||
dt = DecisionTreeClassifier(**rs)
|
||||
ets = ExtraTreesClassifier(**rs)
|
||||
|
||||
rf = RandomForestClassifier(**rs, n_estimators = 1000 )
|
||||
rf2 = RandomForestClassifier(
|
||||
min_samples_leaf = 5
|
||||
, n_estimators = 1000
|
||||
, bootstrap = True
|
||||
, oob_score = True
|
||||
, **njobs
|
||||
, **rs
|
||||
, max_features = 'auto')
|
||||
xgb = XGBClassifier(**rs, verbosity = 0, use_label_encoder =False)
|
||||
|
||||
lda = LinearDiscriminantAnalysis()
|
||||
|
||||
mnb = MultinomialNB()
|
||||
|
||||
pa = PassiveAggressiveClassifier(**rs, **njobs)
|
||||
|
||||
sgd = SGDClassifier(**rs, **njobs)
|
||||
|
||||
abc = AdaBoostClassifier(**rs)
|
||||
bc = BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True)
|
||||
et = ExtraTreeClassifier(**rs)
|
||||
gpc = GaussianProcessClassifier(**rs)
|
||||
gbc = GradientBoostingClassifier(**rs)
|
||||
qda = QuadraticDiscriminantAnalysis()
|
||||
rc = RidgeClassifier(**rs)
|
||||
rccv = RidgeClassifierCV(cv = 10)
|
||||
|
||||
models = [('Logistic Regression' , lr)
|
||||
, ('Logistic RegressionCV' , lrcv)
|
||||
, ('Gaussian NB' , gnb)
|
||||
, ('Naive Bayes' , nb)
|
||||
, ('K-Nearest Neighbors' , knn)
|
||||
, ('SVM' , svc)
|
||||
, ('MLP' , mlp)
|
||||
, ('Decision Tree' , dt)
|
||||
, ('Extra Trees' , ets)
|
||||
, ('Extra Tree' , et)
|
||||
, ('Random Forest' , rf)
|
||||
, ('Random Forest2' , rf2)
|
||||
, ('Naive Bayes' , nb)
|
||||
, ('XGBoost' , xgb)
|
||||
, ('LDA' , lda)
|
||||
, ('Multinomial' , mnb)
|
||||
, ('Passive Aggresive' , pa)
|
||||
, ('Stochastic GDescent' , sgd)
|
||||
, ('AdaBoost Classifier' , abc)
|
||||
, ('Bagging Classifier' , bc)
|
||||
, ('Gaussian Process' , gpc)
|
||||
, ('Gradient Boosting' , gbc)
|
||||
, ('QDA' , qda)
|
||||
, ('Ridge Classifier' , rc)
|
||||
, ('Ridge ClassifierCV' , rccv)
|
||||
]
|
||||
|
||||
mm_skf_scoresD = {}
|
||||
|
||||
for model_name, model_fn in models:
|
||||
print('\nModel_name:', model_name
|
||||
, '\nModel func:' , model_fn
|
||||
, '\nList of models:', models)
|
||||
|
||||
model_pipeline = Pipeline([
|
||||
('prep' , col_transform)
|
||||
, ('model' , model_fn)])
|
||||
|
||||
print('Running model pipeline:', model_pipeline)
|
||||
skf_cv_mod = cross_validate(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
, cv = skf_cv
|
||||
, scoring = scoring_fn
|
||||
, return_train_score = True)
|
||||
mm_skf_scoresD[model_name] = {}
|
||||
for key, value in skf_cv_mod.items():
|
||||
print('\nkey:', key, '\nvalue:', value)
|
||||
print('\nmean value:', mean(value))
|
||||
mm_skf_scoresD[model_name][key] = round(mean(value),2)
|
||||
#pp.pprint(mm_skf_scoresD)
|
||||
#cvtrain_mcc = mm_skf_scoresD[model_name]['test_mcc']
|
||||
|
||||
#return(mm_skf_scoresD)
|
||||
#%%
|
||||
#=========================
|
||||
# Blind test: BTS results
|
||||
#=========================
|
||||
# Build the final results with all scores for a feature selected model
|
||||
#bts_predict = gscv_fs.predict(blind_test_input_df)
|
||||
model_pipeline.fit(input_df, target)
|
||||
bts_predict = model_pipeline.predict(blind_test_input_df)
|
||||
|
||||
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
|
||||
print('\nMCC on Blind test:' , bts_mcc_score)
|
||||
print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
|
||||
|
||||
# Diff b/w train and bts test scores
|
||||
#train_test_diff_MCC = cvtrain_mcc - bts_mcc_score
|
||||
# print('\nDiff b/w train and blind test score (MCC):', train_test_diff)
|
||||
|
||||
|
||||
# # create a dict with all scores
|
||||
# lr_btsD = { 'model_name': model_name
|
||||
# , 'bts_mcc':None
|
||||
# , 'bts_fscore':None
|
||||
# , 'bts_precision':None
|
||||
# , 'bts_recall':None
|
||||
# , 'bts_accuracy':None
|
||||
# , 'bts_roc_auc':None
|
||||
# , 'bts_jaccard':None}
|
||||
|
||||
|
||||
mm_skf_scoresD[model_name]['bts_mcc'] = bts_mcc_score
|
||||
mm_skf_scoresD[model_name]['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
|
||||
mm_skf_scoresD[model_name]['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
|
||||
mm_skf_scoresD[model_name]['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
|
||||
mm_skf_scoresD[model_name]['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
|
||||
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
|
||||
mm_skf_scoresD[model_name]['bts_jaccard'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
||||
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
||||
|
||||
return(mm_skf_scoresD)
|
||||
|
537
scripts/ml/ml_data.py
Executable file
537
scripts/ml/ml_data.py
Executable file
|
@ -0,0 +1,537 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 6 13:41:54 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
def setvars(gene,drug):
|
||||
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
print(np.__version__)
|
||||
print(pd.__version__)
|
||||
import pprint as pp
|
||||
from copy import deepcopy
|
||||
from collections import Counter
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
#%% GLOBALS
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
|
||||
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
||||
, 'accuracy' : make_scorer(accuracy_score)
|
||||
, 'fscore' : make_scorer(f1_score)
|
||||
, 'precision' : make_scorer(precision_score)
|
||||
, 'recall' : make_scorer(recall_score)
|
||||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
skf_cv = StratifiedKFold(n_splits = 10
|
||||
#, shuffle = False, random_state= None)
|
||||
, shuffle = True,**rs)
|
||||
|
||||
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
, n_repeats = 3
|
||||
, **rs)
|
||||
|
||||
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
||||
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
||||
|
||||
#%% FOR LATER: Combine ED logo data
|
||||
#%% FOR LATER: active aa site annotations **DONE on 15/05/2022 as part of generating merged_dfs
|
||||
###########################################################################
|
||||
rs = {'random_state': 42}
|
||||
njobs = {'n_jobs': 10}
|
||||
homedir = os.path.expanduser("~")
|
||||
|
||||
#==============
|
||||
# directories
|
||||
#==============
|
||||
datadir = homedir + '/git/Data/'
|
||||
indir = datadir + drug + '/input/'
|
||||
outdir = datadir + drug + '/output/'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
|
||||
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
|
||||
|
||||
my_df = pd.read_csv(infile_ml1, index_col = 0)
|
||||
my_df.dtypes
|
||||
my_df_cols = my_df.columns
|
||||
|
||||
geneL_basic = ['pnca']
|
||||
geneL_na = ['gid']
|
||||
geneL_na_ppi2 = ['rpob']
|
||||
geneL_ppi2 = ['alr', 'embb', 'katg']
|
||||
#%% get cols
|
||||
mycols = my_df.columns
|
||||
|
||||
# # change from numberic to
|
||||
# num_type = ['int64', 'float64']
|
||||
# cat_type = ['object', 'bool']
|
||||
|
||||
# if my_df['active_aa_pos'].dtype in num_type:
|
||||
# my_df['active_aa_pos'] = my_df['active_aa_pos'].astype(object)
|
||||
# my_df['active_aa_pos'].dtype
|
||||
|
||||
# FIXME: if this is not structural, remove from source..
|
||||
# Drop NA where numerical cols have them
|
||||
if gene.lower() in geneL_na_ppi2:
|
||||
#D1148 get rid of
|
||||
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
|
||||
my_df = my_df.drop(index=na_index)
|
||||
|
||||
# FIXME: either impute or remove!
|
||||
# for embb (L114M, F115L, V123L, V125I, V131M) delete for now
|
||||
if gene.lower() in ['embb']:
|
||||
na_index = my_df['mutationinformation'].index[my_df['ligand_distance'].apply(np.isnan)]
|
||||
my_df = my_df.drop(index=na_index)# RERUN embb with the 5 values now present
|
||||
|
||||
###########################################################################
|
||||
#%% Add lineage calculation columns
|
||||
#FIXME: Check if this can be imported from config?
|
||||
total_mtblineage_uc = 8
|
||||
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
|
||||
#bar = my_df[lineage_colnames]
|
||||
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
|
||||
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
|
||||
###########################################################################
|
||||
#%% AA property change
|
||||
#--------------------
|
||||
# Water prop change
|
||||
#--------------------
|
||||
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
|
||||
my_df['water_change'].value_counts()
|
||||
|
||||
water_prop_changeD = {
|
||||
'hydrophobic_to_neutral' : 'change'
|
||||
, 'hydrophobic_to_hydrophobic' : 'no_change'
|
||||
, 'neutral_to_neutral' : 'no_change'
|
||||
, 'neutral_to_hydrophobic' : 'change'
|
||||
, 'hydrophobic_to_hydrophilic' : 'change'
|
||||
, 'neutral_to_hydrophilic' : 'change'
|
||||
, 'hydrophilic_to_neutral' : 'change'
|
||||
, 'hydrophilic_to_hydrophobic' : 'change'
|
||||
, 'hydrophilic_to_hydrophilic' : 'no_change'
|
||||
}
|
||||
|
||||
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
|
||||
my_df['water_change'].value_counts()
|
||||
|
||||
#--------------------
|
||||
# Polarity change
|
||||
#--------------------
|
||||
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
polarity_prop_changeD = {
|
||||
'non-polar_to_non-polar' : 'no_change'
|
||||
, 'non-polar_to_neutral' : 'change'
|
||||
, 'neutral_to_non-polar' : 'change'
|
||||
, 'neutral_to_neutral' : 'no_change'
|
||||
, 'non-polar_to_basic' : 'change'
|
||||
, 'acidic_to_neutral' : 'change'
|
||||
, 'basic_to_neutral' : 'change'
|
||||
, 'non-polar_to_acidic' : 'change'
|
||||
, 'neutral_to_basic' : 'change'
|
||||
, 'acidic_to_non-polar' : 'change'
|
||||
, 'basic_to_non-polar' : 'change'
|
||||
, 'neutral_to_acidic' : 'change'
|
||||
, 'acidic_to_acidic' : 'no_change'
|
||||
, 'basic_to_acidic' : 'change'
|
||||
, 'basic_to_basic' : 'no_change'
|
||||
, 'acidic_to_basic' : 'change'}
|
||||
|
||||
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
|
||||
my_df['polarity_change'].value_counts()
|
||||
|
||||
#--------------------
|
||||
# Electrostatics change
|
||||
#--------------------
|
||||
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
calc_prop_changeD = {
|
||||
'non-polar_to_non-polar' : 'no_change'
|
||||
, 'non-polar_to_polar' : 'change'
|
||||
, 'polar_to_non-polar' : 'change'
|
||||
, 'non-polar_to_pos' : 'change'
|
||||
, 'neg_to_non-polar' : 'change'
|
||||
, 'non-polar_to_neg' : 'change'
|
||||
, 'pos_to_polar' : 'change'
|
||||
, 'pos_to_non-polar' : 'change'
|
||||
, 'polar_to_polar' : 'no_change'
|
||||
, 'neg_to_neg' : 'no_change'
|
||||
, 'polar_to_neg' : 'change'
|
||||
, 'pos_to_neg' : 'change'
|
||||
, 'pos_to_pos' : 'no_change'
|
||||
, 'polar_to_pos' : 'change'
|
||||
, 'neg_to_polar' : 'change'
|
||||
, 'neg_to_pos' : 'change'
|
||||
}
|
||||
|
||||
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
|
||||
my_df['electrostatics_change'].value_counts()
|
||||
|
||||
#--------------------
|
||||
# Summary change: Create a combined column summarising these three cols
|
||||
#--------------------
|
||||
detect_change = 'change'
|
||||
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
|
||||
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
|
||||
my_df['aa_prop_change'] = (my_df[check_prop_cols].values == detect_change).any(1).astype(int)
|
||||
my_df['aa_prop_change'].value_counts()
|
||||
my_df['aa_prop_change'].dtype
|
||||
|
||||
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
|
||||
, 0: 'no_change'})
|
||||
|
||||
my_df['aa_prop_change'].value_counts()
|
||||
my_df['aa_prop_change'].dtype
|
||||
|
||||
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
|
||||
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
|
||||
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
|
||||
or_cols = ['or_mychisq', 'log10_or_mychisq']
|
||||
|
||||
print("count of NULL values before imputation\n")
|
||||
print(my_df[or_cols].isnull().sum())
|
||||
|
||||
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
|
||||
|
||||
|
||||
my_dfI = pd.DataFrame(KNN(n_neighbors= 5, weights="uniform").fit_transform(my_df[or_cols])
|
||||
, index = my_df['mutationinformation']
|
||||
, columns = or_cols )
|
||||
my_dfI.columns = ['or_rawI', 'logorI']
|
||||
my_dfI.columns
|
||||
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
|
||||
my_dfI.head()
|
||||
print("count of NULL values AFTER imputation\n")
|
||||
print(my_dfI.isnull().sum())
|
||||
|
||||
#-------------------------------------------
|
||||
# OR df Merge: with original based on index
|
||||
#-------------------------------------------
|
||||
my_df['index_bm'] = my_df.index
|
||||
mydf_imputed = pd.merge(my_df
|
||||
, my_dfI
|
||||
, on = 'mutationinformation')
|
||||
mydf_imputed = mydf_imputed.set_index(['index_bm'])
|
||||
|
||||
my_df['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['log10_or_mychisq'].isna().sum()
|
||||
mydf_imputed['logorI'].isna().sum()
|
||||
|
||||
len(my_df.columns)
|
||||
len(mydf_imputed.columns)
|
||||
|
||||
#-----------------------------------------
|
||||
# REASSIGN my_df after imputing OR values
|
||||
#-----------------------------------------
|
||||
my_df = mydf_imputed.copy()
|
||||
|
||||
#%%########################################################################
|
||||
#==========================
|
||||
# Data for ML
|
||||
#==========================
|
||||
my_df_ml = my_df.copy()
|
||||
|
||||
#==========================
|
||||
# BLIND test set
|
||||
#==========================
|
||||
# Separate blind test set
|
||||
my_df_ml[drug].isna().sum()
|
||||
|
||||
blind_test_df = my_df_ml[my_df_ml[drug].isna()]
|
||||
blind_test_df.shape
|
||||
|
||||
training_df = my_df_ml[my_df_ml[drug].notna()]
|
||||
training_df.shape
|
||||
|
||||
# Target1: dst
|
||||
training_df[drug].value_counts()
|
||||
training_df['dst_mode'].value_counts()
|
||||
|
||||
#%% Build X: input for ML
|
||||
common_cols_stabiltyN = ['ligand_distance'
|
||||
, 'ligand_affinity_change'
|
||||
, 'duet_stability_change'
|
||||
, 'ddg_foldx'
|
||||
, 'deepddg'
|
||||
, 'ddg_dynamut2'
|
||||
, 'mmcsm_lig'
|
||||
, 'contacts']
|
||||
|
||||
# Build stability columns ~ gene
|
||||
if gene.lower() in geneL_basic:
|
||||
X_stabilityN = common_cols_stabiltyN
|
||||
cols_to_mask = ['ligand_affinity_change']
|
||||
|
||||
if gene.lower() in geneL_ppi2:
|
||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_ppi2_affinity' , 'interface_dist']
|
||||
geneL_ppi2_st_cols = ['mcsm_ppi2_affinity', 'interface_dist']
|
||||
X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
|
||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
|
||||
|
||||
if gene.lower() in geneL_na:
|
||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity']
|
||||
geneL_na_st_cols = ['mcsm_na_affinity']
|
||||
X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
|
||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
|
||||
|
||||
if gene.lower() in geneL_na_ppi2:
|
||||
# X_stabilityN = common_cols_stabiltyN + ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
||||
geneL_na_ppi2_st_cols = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
|
||||
X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
|
||||
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
|
||||
|
||||
|
||||
X_foldX_cols = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
|
||||
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
|
||||
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
|
||||
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
|
||||
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
|
||||
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss'
|
||||
]
|
||||
|
||||
X_str = ['rsa'
|
||||
#, 'asa'
|
||||
, 'kd_values'
|
||||
, 'rd_values']
|
||||
|
||||
X_ssFN = X_stabilityN + X_str + X_foldX_cols
|
||||
|
||||
X_evolFN = ['consurf_score'
|
||||
, 'snap2_score'
|
||||
, 'provean_score']
|
||||
|
||||
X_genomic_mafor = ['maf'
|
||||
, 'logorI'
|
||||
# , 'or_rawI'
|
||||
# , 'or_mychisq'
|
||||
# , 'or_logistic'
|
||||
# , 'or_fisher'
|
||||
# , 'pval_fisher'
|
||||
]
|
||||
|
||||
X_genomic_linegae = ['lineage_proportion'
|
||||
, 'dist_lineage_proportion'
|
||||
#, 'lineage' # could be included as a category but it has L2;L4 formatting
|
||||
, 'lineage_count_all'
|
||||
, 'lineage_count_unique'
|
||||
]
|
||||
|
||||
X_genomicFN = X_genomic_mafor + X_genomic_linegae
|
||||
|
||||
#%% Construct numerical and categorical column names
|
||||
# numerical feature names
|
||||
# numerical_FN = common_cols_stabiltyN + foldX_cols + X_strFN + X_evolFN + X_genomicFN
|
||||
|
||||
numerical_FN = X_ssFN + X_evolFN + X_genomicFN
|
||||
|
||||
#categorical feature names
|
||||
categorical_FN = ['ss_class'
|
||||
# , 'wt_prop_water'
|
||||
# , 'mut_prop_water'
|
||||
# , 'wt_prop_polarity'
|
||||
# , 'mut_prop_polarity'
|
||||
# , 'wt_calcprop'
|
||||
# , 'mut_calcprop'
|
||||
, 'aa_prop_change'
|
||||
, 'electrostatics_change'
|
||||
, 'polarity_change'
|
||||
, 'water_change'
|
||||
, 'drtype_mode_labels' # beware then you can use it to predict
|
||||
#, 'active_aa_pos' # TODO?
|
||||
]
|
||||
###########################################################################
|
||||
#=======================
|
||||
# Masking columns:
|
||||
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
|
||||
#=======================
|
||||
#%% Masking columns
|
||||
# my_df_ml['mutationinformation'][my_df['ligand_distance']>10].value_counts()
|
||||
# my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
|
||||
# my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), 'ligand_affinity_change'] = 0
|
||||
# (my_df_ml['ligand_affinity_change'] == 0).sum()
|
||||
|
||||
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
|
||||
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
|
||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
|
||||
|
||||
# mask the column ligand distance > 10
|
||||
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
|
||||
(my_df_ml['ligand_affinity_change'] == 0).sum()
|
||||
|
||||
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
|
||||
|
||||
# write file for check
|
||||
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
|
||||
mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
|
||||
|
||||
#%% extracting dfs based on numerical, categorical column names
|
||||
#----------------------------------
|
||||
# WITHOUT the target var included
|
||||
#----------------------------------
|
||||
num_df = training_df[numerical_FN]
|
||||
num_df.shape
|
||||
|
||||
cat_df = training_df[categorical_FN]
|
||||
cat_df.shape
|
||||
|
||||
all_df = training_df[numerical_FN + categorical_FN]
|
||||
all_df.shape
|
||||
|
||||
#------------------------------
|
||||
# WITH the target var included:
|
||||
#'wtgt': with target
|
||||
#------------------------------
|
||||
# drug and dst_mode should be the same thing
|
||||
num_df_wtgt = training_df[numerical_FN + ['dst_mode']]
|
||||
num_df_wtgt.shape
|
||||
|
||||
cat_df_wtgt = training_df[categorical_FN + ['dst_mode']]
|
||||
cat_df_wtgt.shape
|
||||
|
||||
all_df_wtgt = training_df[numerical_FN + categorical_FN + ['dst_mode']]
|
||||
all_df_wtgt.shape
|
||||
#%%########################################################################
|
||||
#============
|
||||
# ML data
|
||||
#============
|
||||
#------
|
||||
# X: Training and Blind test (BTS)
|
||||
#------
|
||||
X = all_df_wtgt[numerical_FN + categorical_FN] # training data ALL
|
||||
X_bts = blind_test_df[numerical_FN + categorical_FN] # blind test data ALL
|
||||
#X = all_df_wtgt[numerical_FN] # training numerical only
|
||||
#X_bts = blind_test_df[numerical_FN] # blind test data numerical
|
||||
|
||||
#------
|
||||
# y
|
||||
#------
|
||||
y = all_df_wtgt['dst_mode'] # training data y
|
||||
y_bts = blind_test_df['dst_mode'] # blind data test y
|
||||
|
||||
#X_bts_wt = blind_test_df[numerical_FN + ['dst_mode']]
|
||||
|
||||
# Quick check
|
||||
#(X['ligand_affinity_change']==0).sum() == (X['ligand_distance']>10).sum()
|
||||
for i in range(len(cols_to_mask)):
|
||||
ind = i+1
|
||||
print('\nindex:', i, '\nind:', ind)
|
||||
print('\nMask count check:'
|
||||
, (my_df_ml[cols_to_mask[i]]==0).sum() == (my_df_ml['ligand_distance']>10).sum()
|
||||
)
|
||||
|
||||
print('Original Data\n', Counter(y)
|
||||
, 'Data dim:', X.shape)
|
||||
|
||||
###############################################################################
|
||||
#%%
|
||||
############################################################################
|
||||
# RESAMPLING
|
||||
###############################################################################
|
||||
#------------------------------
|
||||
# Simple Random oversampling
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
oversample = RandomOverSampler(sampling_strategy='minority')
|
||||
X_ros, y_ros = oversample.fit_resample(X, y)
|
||||
print('Simple Random OverSampling\n', Counter(y_ros))
|
||||
print(X_ros.shape)
|
||||
|
||||
#------------------------------
|
||||
# Simple Random Undersampling
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
undersample = RandomUnderSampler(sampling_strategy='majority')
|
||||
X_rus, y_rus = undersample.fit_resample(X, y)
|
||||
print('Simple Random UnderSampling\n', Counter(y_rus))
|
||||
print(X_rus.shape)
|
||||
|
||||
#------------------------------
|
||||
# Simple combine ROS and RUS
|
||||
# [Numerical + catgeorical]
|
||||
#------------------------------
|
||||
oversample = RandomOverSampler(sampling_strategy='minority')
|
||||
X_ros, y_ros = oversample.fit_resample(X, y)
|
||||
undersample = RandomUnderSampler(sampling_strategy='majority')
|
||||
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
|
||||
print('Simple Combined Over and UnderSampling\n', Counter(y_rouC))
|
||||
print(X_rouC.shape)
|
||||
|
||||
#------------------------------
|
||||
# SMOTE_NC: oversampling
|
||||
# [numerical + categorical]
|
||||
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
|
||||
#------------------------------
|
||||
# Determine categorical and numerical features
|
||||
numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
num_featuresL = list(numerical_ix)
|
||||
numerical_colind = X.columns.get_indexer(list(numerical_ix) )
|
||||
numerical_colind
|
||||
|
||||
categorical_ix = X.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
categorical_colind = X.columns.get_indexer(list(categorical_ix))
|
||||
categorical_colind
|
||||
|
||||
k_sm = 5 # 5 is deafult
|
||||
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm, **rs, **njobs)
|
||||
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
|
||||
print('SMOTE_NC OverSampling\n', Counter(y_smnc))
|
||||
print(X_smnc.shape)
|
||||
globals().update(locals()) # TROLOLOLOLOLOLS
|
||||
#print("i did a horrible hack :-)")
|
||||
###############################################################################
|
||||
#%% SMOTE RESAMPLING for NUMERICAL ONLY*
|
||||
# #------------------------------
|
||||
# # SMOTE: Oversampling
|
||||
# # [Numerical ONLY]
|
||||
# #------------------------------
|
||||
# k_sm = 1
|
||||
# sm = SMOTE(sampling_strategy = 'auto', k_neighbors = k_sm, **rs)
|
||||
# X_sm, y_sm = sm.fit_resample(X, y)
|
||||
# print(X_sm.shape)
|
||||
# print('SMOTE OverSampling\n', Counter(y_sm))
|
||||
# y_sm_df = y_sm.to_frame()
|
||||
# y_sm_df.value_counts().plot(kind = 'bar')
|
||||
|
||||
# #------------------------------
|
||||
# # SMOTE: Over + Undersampling COMBINED
|
||||
# # [Numerical ONLY]
|
||||
# #-----------------------------
|
||||
# sm_enn = SMOTEENN(enn=EditedNearestNeighbours(sampling_strategy='all', **rs, **njobs ))
|
||||
# X_enn, y_enn = sm_enn.fit_resample(X, y)
|
||||
# print(X_enn.shape)
|
||||
# print('SMOTE Over+Under Sampling combined\n', Counter(y_enn))
|
||||
|
||||
###############################################################################
|
||||
# TODO: Find over and undersampling JUST for categorical data
|
188
scripts/ml/pnca_config.py
Executable file
188
scripts/ml/pnca_config.py
Executable file
|
@ -0,0 +1,188 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat May 28 05:25:30 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
gene = 'pncA'
|
||||
drug = 'pyrazinamide'
|
||||
#total_mtblineage_uc = 8
|
||||
|
||||
homedir = os.path.expanduser("~")
|
||||
os.chdir( homedir + '/git/ML_AI_training/')
|
||||
|
||||
#---------------------------
|
||||
# Version 1: no AAindex
|
||||
#from UQ_ML_data import *
|
||||
#setvars(gene,drug)
|
||||
#from UQ_ML_data import *
|
||||
#---------------------------
|
||||
|
||||
from UQ_ML_data2 import *
|
||||
setvars(gene,drug)
|
||||
from UQ_ML_data2 import *
|
||||
|
||||
# from YC run_all_ML: run locally
|
||||
#from UQ_yc_RunAllClfs import run_all_ML
|
||||
|
||||
# TT run all ML clfs: baseline mode
|
||||
from UQ_MultModelsCl import MultModelsCl
|
||||
|
||||
#%%###########################################################################
|
||||
|
||||
print('\n#####################################################################\n')
|
||||
|
||||
print('TESTING cmd:'
|
||||
, '\nGene name:', gene
|
||||
, '\nDrug name:', drug
|
||||
, '\nTotal input features:', X.shape
|
||||
, '\n', Counter(y))
|
||||
|
||||
print('Strucutral features (n):'
|
||||
, len(X_ssFN)
|
||||
, '\nThese are:'
|
||||
, '\nCommon stablity features:', X_stabilityN
|
||||
, '\nFoldX columns:', X_foldX_cols
|
||||
, '\nOther struc columns:', X_str
|
||||
, '\n================================================================\n')
|
||||
|
||||
print('AAindex features (n):'
|
||||
, len(X_aaindexFN)
|
||||
, '\nThese are:\n'
|
||||
, X_aaindexFN
|
||||
, '\n================================================================\n')
|
||||
|
||||
print('Evolutionary features (n):'
|
||||
, len(X_evolFN)
|
||||
, '\nThese are:\n'
|
||||
, X_evolFN
|
||||
, '\n================================================================\n')
|
||||
|
||||
print('Genomic features (n):'
|
||||
, len(X_genomicFN)
|
||||
, '\nThese are:\n'
|
||||
, X_genomic_mafor, '\n'
|
||||
, X_genomic_linegae
|
||||
, '\n================================================================\n')
|
||||
|
||||
print('Categorical features (n):'
|
||||
, len(categorical_FN)
|
||||
, '\nThese are:\n'
|
||||
, categorical_FN
|
||||
, '\n================================================================\n')
|
||||
|
||||
if ( len(X.columns) == len(X_ssFN) + len(X_aaindexFN) + len(X_evolFN) + len(X_genomicFN) + len(categorical_FN) ):
|
||||
print('\nPass: No. of features match')
|
||||
else:
|
||||
sys.exit('\nFail: Count of feature mismatch')
|
||||
|
||||
print('\n#####################################################################\n')
|
||||
|
||||
################################################################################
|
||||
#==================
|
||||
# Baseline models
|
||||
#==================
|
||||
mm_skf_scoresD = MultModelsCl(input_df = X
|
||||
, target = y
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
|
||||
baseline_all = pd.DataFrame(mm_skf_scoresD)
|
||||
baseline_all = baseline_all.T
|
||||
#baseline_train = baseline_all.filter(like='train_', axis=1)
|
||||
baseline_CT = baseline_all.filter(like='test_', axis=1)
|
||||
baseline_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
baseline_BT = baseline_all.filter(like='bts_', axis=1)
|
||||
baseline_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# Write csv
|
||||
baseline_CT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_CT_allF.csv')
|
||||
baseline_BT.to_csv(outdir + 'ml/' + gene.lower() + '_baseline_BT_allF.csv')
|
||||
|
||||
|
||||
#%% SMOTE NC: Oversampling [Numerical + categorical]
|
||||
mm_skf_scoresD7 = MultModelsCl(input_df = X_smnc
|
||||
, target = y_smnc
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
smnc_all = pd.DataFrame(mm_skf_scoresD7)
|
||||
smnc_all = smnc_all.T
|
||||
|
||||
smnc_CT = smnc_all.filter(like='test_', axis=1)
|
||||
smnc_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
smnc_BT = smnc_all.filter(like='bts_', axis=1)
|
||||
smnc_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# Write csv
|
||||
smnc_CT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_CT_allF.csv')
|
||||
smnc_BT.to_csv(outdir + 'ml/' + gene.lower() + '_smnc_BT_allF.csv')
|
||||
|
||||
#%% ROS: Numerical + categorical
|
||||
mm_skf_scoresD3 = MultModelsCl(input_df = X_ros
|
||||
, target = y_ros
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
ros_all = pd.DataFrame(mm_skf_scoresD3)
|
||||
ros_all = ros_all.T
|
||||
|
||||
ros_CT = ros_all.filter(like='test_', axis=1)
|
||||
ros_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
ros_BT = ros_all.filter(like='bts_', axis=1)
|
||||
ros_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# Write csv
|
||||
ros_CT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_CT_allF.csv')
|
||||
ros_BT.to_csv(outdir + 'ml/' + gene.lower() + '_ros_BT_allF.csv')
|
||||
|
||||
#%% RUS: Numerical + categorical
|
||||
mm_skf_scoresD4 = MultModelsCl(input_df = X_rus
|
||||
, target = y_rus
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
rus_all = pd.DataFrame(mm_skf_scoresD4)
|
||||
rus_all = rus_all.T
|
||||
|
||||
rus_CT = rus_all.filter(like='test_', axis=1)
|
||||
rus_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
rus_BT = rus_all.filter(like='bts_' , axis=1)
|
||||
rus_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# Write csv
|
||||
rus_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_CT_allF.csv')
|
||||
rus_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rus_BT_allF.csv')
|
||||
|
||||
#%% ROS + RUS Combined: Numerical + categorical
|
||||
mm_skf_scoresD8 = MultModelsCl(input_df = X_rouC
|
||||
, target = y_rouC
|
||||
, var_type = 'mixed'
|
||||
, skf_cv = skf_cv
|
||||
, blind_test_input_df = X_bts
|
||||
, blind_test_target = y_bts)
|
||||
rouC_all = pd.DataFrame(mm_skf_scoresD8)
|
||||
rouC_all = rouC_all.T
|
||||
|
||||
rouC_CT = rouC_all.filter(like='test_', axis=1)
|
||||
rouC_CT.sort_values(by = ['test_mcc'], ascending = False, inplace = True)
|
||||
|
||||
rouC_BT = rouC_all.filter(like='bts_', axis=1)
|
||||
rouC_BT.sort_values(by = ['bts_mcc'], ascending = False, inplace = True)
|
||||
|
||||
# Write csv
|
||||
rouC_CT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_CT_allF.csv')
|
||||
rouC_BT.to_csv(outdir + 'ml/' + gene.lower() + '_rouC_BT_allF.csv')
|
Loading…
Add table
Add a link
Reference in a new issue