added the cm_ml_iterator_TODO.py for later

This commit is contained in:
Tanushree Tunstall 2022-07-28 15:25:31 +01:00
parent e32308d984
commit 37f5199c5c

View file

@ -0,0 +1,89 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 20:29:36 2022
@author: tanu
"""
import sys, os
import pandas as pd
import numpy as np
import re
###############################################################################
homedir = os.path.expanduser("~")
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
sys.path
###############################################################################
outdir = homedir + '/git/LSHTM_ML/output/combined/'
#====================
# Import ML functions
#====================
#from MultClfs import *
#from MultClfs_logo_skf import *
from MultClfs_logo_skf_split import *
from GetMLData import *
from SplitTTS import *
# Input data
from ml_data_combined import *
###############################################################################
print('\nUsing data with 5 genes:', len(cm_input_df5))
###############################################################################
split_types = ['70_30', '80_20', 'sl']
split_data_types = ['actual', 'complete']
for split_type in split_types:
for data_type in split_data_types:
out_filename = outdir + 'cm_' + split_type + '_' + data_type + '.csv'
print(out_filename)
tempD = split_tts(cm_input_df5
, data_type = data_type
, split_type = split_type
, oversampling = True
, dst_colname = 'dst'
, target_colname = 'dst_mode'
, include_gene_name = True
)
paramD = {
'baseline_paramD': { 'input_df' : tempD['X']
, 'target' : tempD['y']
, 'var_type' : 'mixed'
, 'resampling_type' : 'none'}
, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
, 'target' : tempD['y_smnc']
, 'var_type' : 'mixed'
, 'resampling_type' : 'smnc'}
, 'ros_paramD' : { 'input_df' : tempD['X_ros']
, 'target' : tempD['y_ros']
, 'var_type' : 'mixed'
, 'resampling_type' : 'ros'}
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
, 'target' : tempD['y_rus']
, 'var_type' : 'mixed'
, 'resampling_type' : 'rus'}
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
, 'target' : tempD['y_rouC']
, 'var_type' : 'mixed'
, 'resampling_type' : 'rouC'}
}
mmDD = {}
for k, v in paramD.items():
scoresD = MultModelsCl_logo_skf(**paramD[k]
XXXXXXXXXXXXXXXXXXXXXXX
mmDD[k] = scoresD
# Extracting the dfs from within the dict and concatenating to output as one df
for k, v in mmDD.items():
out_wf= pd.concat(mmDD, ignore_index = True)
out_wf_f = out_wf.sort_values(by = ['resampling', 'source_data', 'MCC'], ascending = [True, True, False], inplace = False)
out_wf_f.to_csv(('/home/tanu/git/Data/ml_combined/genes/'+out_filename), index = False)