added the cm_ml_iterator_TODO.py for later
This commit is contained in:
parent
e32308d984
commit
37f5199c5c
1 changed files with 89 additions and 0 deletions
89
scripts/ml/combined_model/cm_ml_iterator_TODO.py
Executable file
89
scripts/ml/combined_model/cm_ml_iterator_TODO.py
Executable file
|
@ -0,0 +1,89 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
"""
|
||||||
|
Created on Wed Jun 29 20:29:36 2022
|
||||||
|
|
||||||
|
@author: tanu
|
||||||
|
"""
|
||||||
|
import sys, os
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import re
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
homedir = os.path.expanduser("~")
|
||||||
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||||
|
sys.path
|
||||||
|
###############################################################################
|
||||||
|
outdir = homedir + '/git/LSHTM_ML/output/combined/'
|
||||||
|
|
||||||
|
#====================
|
||||||
|
# Import ML functions
|
||||||
|
#====================
|
||||||
|
#from MultClfs import *
|
||||||
|
#from MultClfs_logo_skf import *
|
||||||
|
from MultClfs_logo_skf_split import *
|
||||||
|
|
||||||
|
from GetMLData import *
|
||||||
|
from SplitTTS import *
|
||||||
|
|
||||||
|
# Input data
|
||||||
|
from ml_data_combined import *
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
print('\nUsing data with 5 genes:', len(cm_input_df5))
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
split_types = ['70_30', '80_20', 'sl']
|
||||||
|
split_data_types = ['actual', 'complete']
|
||||||
|
|
||||||
|
for split_type in split_types:
|
||||||
|
for data_type in split_data_types:
|
||||||
|
|
||||||
|
out_filename = outdir + 'cm_' + split_type + '_' + data_type + '.csv'
|
||||||
|
print(out_filename)
|
||||||
|
tempD = split_tts(cm_input_df5
|
||||||
|
, data_type = data_type
|
||||||
|
, split_type = split_type
|
||||||
|
, oversampling = True
|
||||||
|
, dst_colname = 'dst'
|
||||||
|
, target_colname = 'dst_mode'
|
||||||
|
, include_gene_name = True
|
||||||
|
)
|
||||||
|
paramD = {
|
||||||
|
'baseline_paramD': { 'input_df' : tempD['X']
|
||||||
|
, 'target' : tempD['y']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'none'}
|
||||||
|
, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
|
||||||
|
, 'target' : tempD['y_smnc']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'smnc'}
|
||||||
|
, 'ros_paramD' : { 'input_df' : tempD['X_ros']
|
||||||
|
, 'target' : tempD['y_ros']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'ros'}
|
||||||
|
, 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
||||||
|
, 'target' : tempD['y_rus']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'rus'}
|
||||||
|
, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
||||||
|
, 'target' : tempD['y_rouC']
|
||||||
|
, 'var_type' : 'mixed'
|
||||||
|
, 'resampling_type' : 'rouC'}
|
||||||
|
}
|
||||||
|
|
||||||
|
mmDD = {}
|
||||||
|
for k, v in paramD.items():
|
||||||
|
scoresD = MultModelsCl_logo_skf(**paramD[k]
|
||||||
|
XXXXXXXXXXXXXXXXXXXXXXX
|
||||||
|
mmDD[k] = scoresD
|
||||||
|
|
||||||
|
# Extracting the dfs from within the dict and concatenating to output as one df
|
||||||
|
for k, v in mmDD.items():
|
||||||
|
out_wf= pd.concat(mmDD, ignore_index = True)
|
||||||
|
|
||||||
|
out_wf_f = out_wf.sort_values(by = ['resampling', 'source_data', 'MCC'], ascending = [True, True, False], inplace = False)
|
||||||
|
out_wf_f.to_csv(('/home/tanu/git/Data/ml_combined/genes/'+out_filename), index = False)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue