updated kd.py to relfect a merging col for combining num params later
This commit is contained in:
parent
d44ab57f5a
commit
37e1d43b76
3 changed files with 137 additions and 82 deletions
|
@ -10,16 +10,7 @@ Created on Tue Aug 6 12:56:03 2019
|
|||
# concentrate on positions that have structural info?
|
||||
|
||||
# FIXME: import dirs.py to get the basic dir paths available
|
||||
|
||||
#%% load libraries
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
#import numpy as np
|
||||
|
||||
#from pandas.api.types import is_string_dtype
|
||||
#from pandas.api.types import is_numeric_dtype
|
||||
|
||||
#========================================================
|
||||
#=======================================================================
|
||||
# TASK: extract ALL pncA_p. mutations from GWAS data
|
||||
# Input data file has the following format: each row = unique sample id
|
||||
# id,country,lineage,sublineage,drtype,pyrazinamide,dr_mutations_pyrazinamide,other_mutations_pyrazinamide...
|
||||
|
@ -38,46 +29,58 @@ import pandas as pd
|
|||
# 3) pnca_metadata.csv
|
||||
# 4) pnca_all_muts_msa.csv
|
||||
# 5) pnca_mutational_positons.csv
|
||||
#========================================================
|
||||
#=======================================================================
|
||||
#%% load libraries
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
#import numpy as np
|
||||
|
||||
#from pandas.api.types import is_string_dtype
|
||||
#from pandas.api.types import is_numeric_dtype
|
||||
|
||||
#%% specify homedir as python doesn't recognise tilde
|
||||
homedir = os.path.expanduser('~')
|
||||
|
||||
# my working dir
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||
os.getcwd()
|
||||
|
||||
# import aa dict
|
||||
from reference_dict import my_aa_dict #CHECK DIR STRUC THERE!
|
||||
#========================================================
|
||||
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = gene + '_p.'
|
||||
|
||||
#==========
|
||||
# input dir
|
||||
#==========
|
||||
#=======
|
||||
# data dir
|
||||
#=======
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
indir = homedir + '/' + 'git/Data'
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#===========
|
||||
# output dir
|
||||
#===========
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
infile = datadir + '/' + in_filename
|
||||
print('Input filename: ', in_filename
|
||||
, '\nInput path: ', indir)
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
# several output files
|
||||
# output filenames in respective sections at the time of outputting files
|
||||
#outdir = 'git/Data/pyrazinamide/output'
|
||||
outdir = homedir + '/' + 'git/Data' + '/' + drug + '/' + 'output'
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
print('Output filename: in the respective sections'
|
||||
, '\nOutput path: ', outdir)
|
||||
|
||||
#%%end of variable assignment for input and output files
|
||||
#==============================================================================
|
||||
#%% Read files
|
||||
|
||||
in_filename = 'original_tanushree_data_v2.csv'
|
||||
infile = indir + '/' + in_filename
|
||||
print('Reading input master file:', infile)
|
||||
|
||||
#=======================================================================
|
||||
#%% Read input file
|
||||
master_data = pd.read_csv(infile, sep = ',')
|
||||
|
||||
# column names
|
||||
|
|
|
@ -1,13 +1,19 @@
|
|||
#!/usr/bin/python
|
||||
#%%
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on Tue Aug 6 12:56:03 2019
|
||||
|
||||
@author: tanu
|
||||
'''
|
||||
#=======================================================================
|
||||
# Task: Hydrophobicity (Kd) values for amino acid sequence using the Kyt&-Doolittle
|
||||
# Same output as using the expasy server https://web.expasy.org/protscale/
|
||||
|
||||
# useful links
|
||||
# https://biopython.org/DIST/docs/api/Bio.SeqUtils.ProtParamData-pysrc.html
|
||||
# https://jbloomlab.github.io/dms_tools2/dms_tools2.dssp.html
|
||||
#%%
|
||||
# load packages
|
||||
#=======================================================================
|
||||
#%% load packages
|
||||
from pylab import *
|
||||
from Bio.SeqUtils import ProtParamData
|
||||
from Bio.SeqUtils.ProtParam import ProteinAnalysis
|
||||
|
@ -17,25 +23,46 @@ from Bio import SeqIO
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import sys, os
|
||||
#%%
|
||||
# specify input and output variables
|
||||
|
||||
#%% specify input and output variables
|
||||
homedir = os.path.expanduser('~')
|
||||
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||
os.getcwd()
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
gene_match = gene + '_p.'
|
||||
|
||||
#==========
|
||||
# data dir
|
||||
#==========
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
indir = 'git/Data/pyrazinamide/input/original'
|
||||
in_filename = "3pl1.fasta.txt"
|
||||
infile = homedir + '/' + indir + '/' + in_filename
|
||||
print(infile)
|
||||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
indir = datadir + '/' + drug + '/' + 'input'
|
||||
in_filename = '3pl1.fasta.txt'
|
||||
infile = indir + '/' + in_filename
|
||||
print('Input filename:', in_filename
|
||||
, '\nInput path:', indir)
|
||||
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir = 'git/Data/pyrazinamide/output'
|
||||
out_filename = "kd.csv"
|
||||
outfile = homedir + '/' + outdir + '/' + out_filename
|
||||
print(outfile)
|
||||
#%%
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
out_filename = gene.lower() + '_kd.csv'
|
||||
outfile = outdir + '/' + out_filename
|
||||
print('Output filename:', out_filename
|
||||
, '\nOutput path:', outdir)
|
||||
|
||||
#%%11
|
||||
# specify window size for hydropathy profile computation
|
||||
# https://web.expasy.org/protscale/pscale/protscale_help.html
|
||||
my_window = 3
|
||||
|
@ -43,7 +70,7 @@ offset = round((my_window/2)-0.5)
|
|||
|
||||
fh = open(infile)
|
||||
|
||||
for record in SeqIO.parse(fh, "fasta"):
|
||||
for record in SeqIO.parse(fh, 'fasta'):
|
||||
id = record.id
|
||||
seq = record.seq
|
||||
num_residues = len(seq)
|
||||
|
@ -60,11 +87,23 @@ print('Sequence Length:', num_residues)
|
|||
print('kd_values Length:',len(kd_values))
|
||||
print('Window Length:', my_window)
|
||||
print('Window Offset:', offset)
|
||||
print('======================================================================')
|
||||
print('Checking:len(kd values) is as expected for the given window size & offset...')
|
||||
expected_length = num_residues - (my_window - offset)
|
||||
if len(kd_values) == expected_length:
|
||||
print('PASS: expected and actual length of kd values match')
|
||||
else:
|
||||
print('FAIL: length mismatch'
|
||||
,'\nExpected length:', expected_length
|
||||
,'\nActual length:', len(kd_values))
|
||||
|
||||
# make a df each for; aa sequence and kd_values. Then reset index for each df which will allow easy merging of the two
|
||||
print('======================================================================')
|
||||
#%% make 2 dfs; 1) aa sequence and 2) kd_values. Then reset index for each df
|
||||
# which will allow easy merging of the two dfs.
|
||||
|
||||
# df1: df of aa seq with index reset to start from 1 (reflective of the actual aa position in a sequence)
|
||||
dfSeq = pd.DataFrame({'aa_wt':list(sequence)})
|
||||
# col name for wt is the same as reflected in the the AF_OR file to allow easy merging
|
||||
dfSeq = pd.DataFrame({'wild_type':list(sequence)})
|
||||
dfSeq.index = np.arange(1, len(dfSeq) + 1) # python is not inclusive
|
||||
|
||||
# df2: df of kd_values with index reset to start from offset + 1 and subsequent matched length of the kd_values
|
||||
|
@ -76,19 +115,35 @@ max(dfVals['kd_values'])
|
|||
min(dfVals['kd_values'])
|
||||
|
||||
# Merge the two on index (as these are now reflective of the aa position numbers): df1 and df2
|
||||
# This will introduce NaN where there is missing values. In our case this will be 2 (first and last ones)
|
||||
# Conveniently, the last position in this case is not part of the struc, so not much loss of info
|
||||
# Needless to state that this will be variable for other targets.
|
||||
|
||||
df = pd.concat([dfSeq, dfVals], axis = 1)
|
||||
# rename index to position
|
||||
df = df.rename_axis('position')
|
||||
print(df)
|
||||
#%%
|
||||
# write file
|
||||
#%% write file
|
||||
print('Writing file:', out_filename
|
||||
, '\nFilename:', out_filename
|
||||
, '\nPath:', outdir)
|
||||
|
||||
df.to_csv(outfile, header = True, index = True)
|
||||
|
||||
print('Finished writing:', out_filename
|
||||
, '\nNo. of rows:', len(df)
|
||||
, '\nNo. of cols:', len(df.columns))
|
||||
|
||||
#%% Plot
|
||||
# http://www.dalkescientific.com/writings/NBN/plotting.html
|
||||
|
||||
# FIXME: save fig
|
||||
# extract just pdb if from 'id' to pass to title of plot
|
||||
# foo = re.match(r'(^[0-9]{1}\w{3})', id).groups(1)
|
||||
plot(kd_values, linewidth = 1.0)
|
||||
#axis(xmin = 1, xmax = num_residues)
|
||||
xlabel("Residue Number")
|
||||
ylabel("Hydrophobicity")
|
||||
title("K&D Hydrophobicity for " + id)
|
||||
xlabel('Residue Number')
|
||||
ylabel('Hydrophobicity')
|
||||
title('K&D Hydrophobicity for ' + id)
|
||||
show()
|
||||
#%% end of script
|
||||
|
|
|
@ -7,29 +7,25 @@ Created on Tue Aug 6 12:56:03 2019
|
|||
'''
|
||||
|
||||
# FIXME: import dirs.py to get the basic dir paths available
|
||||
|
||||
#%% load libraries
|
||||
###################
|
||||
# load libraries
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
#import numpy as np
|
||||
|
||||
#====================================================
|
||||
#=======================================================================
|
||||
# TASK: calculate how many mutations result in
|
||||
# electrostatic changes wrt wt
|
||||
# Input: mcsm and AF_OR file
|
||||
# Output: mut_elec_changes_results.txt
|
||||
#========================================================
|
||||
#=======================================================================
|
||||
#%% load libraries
|
||||
import os, sys
|
||||
import pandas as pd
|
||||
#import numpy as np
|
||||
|
||||
#%% specify homedir as python doesn't recognise tilde
|
||||
homedir = os.path.expanduser('~')
|
||||
|
||||
# my working dir
|
||||
# set working dir
|
||||
os.getcwd()
|
||||
os.chdir(homedir + '/git/LSHTM_analysis/meta_data_analysis')
|
||||
os.getcwd()
|
||||
|
||||
#========================================================
|
||||
#=======================================================================
|
||||
#%% variable assignment: input and output paths & filenames
|
||||
drug = 'pyrazinamide'
|
||||
gene = 'pncA'
|
||||
|
@ -41,28 +37,29 @@ gene_match = gene + '_p.'
|
|||
#indir = 'git/Data/pyrazinamide/input/original'
|
||||
datadir = homedir + '/' + 'git/Data'
|
||||
|
||||
#==========
|
||||
# input dir
|
||||
#==========
|
||||
#=======
|
||||
# input
|
||||
#=======
|
||||
indir = datadir + '/' + drug + '/' + 'input'
|
||||
in_filename = 'merged_df3.csv'
|
||||
infile = outdir + '/' + in_filename
|
||||
print('Input filename: ', in_filename
|
||||
, '\nInput path: ', indir)
|
||||
|
||||
#============
|
||||
# output dir
|
||||
#============
|
||||
# several output files
|
||||
#=======
|
||||
# output
|
||||
#=======
|
||||
outdir = datadir + '/' + drug + '/' + 'output'
|
||||
|
||||
# specify output file
|
||||
out_filename = 'mut_elec_changes.txt'
|
||||
outfile = outdir + '/' + out_filename
|
||||
print('Output path: ', outdir)
|
||||
print('Output filename: ', out_filename
|
||||
, '\nOutput path: ', outdir)
|
||||
|
||||
#%% end of variable assignment for input and output files
|
||||
#=============================================================
|
||||
#=======================================================================
|
||||
#%% Read input files
|
||||
#in_filename = gene.lower() + '_meta_data_with_AFandOR.csv'
|
||||
in_filename = 'merged_df3.csv'
|
||||
infile = outdir + '/' + in_filename
|
||||
print('Reading input file (merged file):', infile)
|
||||
|
||||
comb_df = pd.read_csv(infile, sep = ',')
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue