added fd corrected p-values for ks stats
This commit is contained in:
parent
f5f1e388c3
commit
365c322953
3 changed files with 333 additions and 176 deletions
|
@ -109,6 +109,10 @@ cat("\n==================================================="
|
|||
)
|
||||
##############################################################
|
||||
# var for position customisation for plots
|
||||
aa_pos_lig1 = aa_pos_ca
|
||||
# aa_pos_lig1 = aa_pos_ca
|
||||
# aa_pos_lig2 = aa_pos_cdl
|
||||
# aa_pos_lig3 = aa_pos_dsl
|
||||
|
||||
aa_pos_lig1 = aa_pos_dsl
|
||||
aa_pos_lig2 = aa_pos_cdl
|
||||
aa_pos_lig3 = aa_pos_dsl
|
||||
aa_pos_lig3 = aa_pos_ca
|
|
@ -18,38 +18,26 @@ source("~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R")
|
|||
# Output
|
||||
#=============
|
||||
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
|
||||
outdir_stats = "~/git/LSHTM_analysis/scripts/plotting/plotting_thesis/stats/"
|
||||
outdir_stats = paste0(outdir_images,"stats/")
|
||||
|
||||
# ks test by lineage
|
||||
#ks_lineage = paste0(outdir, "/KS_lineage_all_muts.csv")
|
||||
|
||||
###########################
|
||||
# Data for stats
|
||||
# you need merged_df2 or merged_df2_comp
|
||||
# you need df2 or df2_comp
|
||||
# since this is one-many relationship
|
||||
# i.e the same SNP can belong to multiple lineages
|
||||
# using the _comp dataset means
|
||||
# we lose some muts and at this level, we should use
|
||||
# as much info as available, hence use df with NA
|
||||
###########################
|
||||
|
||||
# REASSIGNMENT
|
||||
my_df = merged_df2
|
||||
|
||||
# delete variables not required
|
||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
||||
rm(merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig, my_df_u, my_df_u_lig)
|
||||
df2 = merged_df2[, colnames(merged_df2)%in%plotting_cols]
|
||||
|
||||
# quick checks
|
||||
colnames(my_df)
|
||||
str(my_df)
|
||||
colnames(df2)
|
||||
str(df2)
|
||||
|
||||
# Ensure correct data type in columns to plot: need to be factor
|
||||
#is.factor(my_df$lineage)
|
||||
#my_df$lineage = as.factor(my_df$lineage)
|
||||
#is.factor(my_df$lineage)
|
||||
########################################################################
|
||||
table(my_df$lineage); str(my_df$lineage)
|
||||
table(df2$lineage); str(df2$lineage)
|
||||
|
||||
# subset only lineages1-4
|
||||
sel_lineages = c("L1"
|
||||
|
@ -58,29 +46,22 @@ sel_lineages = c("L1"
|
|||
, "L4")
|
||||
|
||||
# subset selected lineages
|
||||
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
|
||||
df_lin = subset(df2, subset = lineage %in% sel_lineages)
|
||||
|
||||
table(df_lin$lineage)
|
||||
table(df_lin$sensitivity)
|
||||
|
||||
table(df_lin$lineage, df_lin$sensitivity)
|
||||
|
||||
#==============
|
||||
# dr_muts_col
|
||||
#==============
|
||||
#table(df_lin$mutation_info); str(df_lin$mutation_info)
|
||||
#ensure lineage is a factor
|
||||
#str(df_lin$lineage); str(df_lin$lineage_labels)
|
||||
#df_lin$lineage = as.factor(df_lin$lineage)
|
||||
#df_lin$lineage_labels = as.factor(df_lin$lineage)
|
||||
table(df_lin$lineage); table(df_lin$lineage_labels)]
|
||||
|
||||
# subset df with dr muts only
|
||||
#df_lin_dr = subset(df_lin, mutation_info == dr_muts_col)
|
||||
#table(df_lin_dr$mutation_info)
|
||||
|
||||
#==============
|
||||
# other_muts_col
|
||||
#==============
|
||||
#df_lin_other = subset(df_lin, mutation_info == other_muts_col)
|
||||
#table(df_lin_other$mutation_info)
|
||||
|
||||
#=======================================================================
|
||||
#==============================
|
||||
# Stats for average stability
|
||||
#=============================
|
||||
# individual: CHECKS
|
||||
lin1 = df_lin[df_lin$lineage == "L1",]$avg_stability_scaled
|
||||
lin2 = df_lin[df_lin$lineage == "L2",]$avg_stability_scaled
|
||||
|
@ -89,14 +70,14 @@ lin4 = df_lin[df_lin$lineage == "L4",]$avg_stability_scaled
|
|||
|
||||
ks.test(lin1, lin4)
|
||||
|
||||
|
||||
ks.test(df_lin$avg_stability_scaled[df_lin$lineage == "L2"]
|
||||
, df_lin$avg_stability_scaled[df_lin$lineage == "L3"])
|
||||
ks.test(df_lin$avg_stability_scaled[df_lin$lineage == "L1"]
|
||||
, df_lin$avg_stability_scaled[df_lin$lineage == "L4"])
|
||||
|
||||
#=======================================================================
|
||||
my_lineages = levels(factor(df_lin$lineage)); my_lineages
|
||||
#=======================================================================
|
||||
# Loop
|
||||
#0 : < 2.2e-16
|
||||
#=====================
|
||||
# Lineage 1 comparisons
|
||||
#=====================
|
||||
|
@ -131,7 +112,7 @@ for (i in my_lineages_comp_l1){
|
|||
, df_lin$avg_stability_scaled[df_lin$lineage == i])$p.value
|
||||
|
||||
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
|
||||
l1_df$comparison = lineage_comp
|
||||
l1_df$comparison = lineage_comp
|
||||
l1_df$method = ks_method
|
||||
l1_df$ks_statistic = ks_statistic[[1]]
|
||||
l1_df$ks_pvalue = ks_pvalue
|
||||
|
@ -142,6 +123,33 @@ for (i in my_lineages_comp_l1){
|
|||
ks_df_l1 = rbind(ks_df_l1,l1_df)
|
||||
|
||||
}
|
||||
|
||||
ks_df_l1
|
||||
|
||||
# adjusted p-value: bonferroni
|
||||
ks_df_l1$p_adj_bonferroni = p.adjust(ks_df_l1$ks_pvalue, method = "bonferroni")
|
||||
ks_df_l1$signif_bon = ks_df_l1$p_adj_bonferroni
|
||||
ks_df_l1 = dplyr::mutate(ks_df_l1
|
||||
, signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
, signif_bon <=0.0001 ~ '****'
|
||||
, signif_bon <=0.001 ~ '***'
|
||||
, signif_bon <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# adjusted p-value:fdr
|
||||
ks_df_l1$p_adj_fdr = p.adjust(ks_df_l1$ks_pvalue, method = "fdr")
|
||||
ks_df_l1$signif_fdr = ks_df_l1$p_adj_fdr
|
||||
ks_df_l1 = dplyr::mutate(ks_df_l1
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
ks_df_l1
|
||||
|
||||
#####################################################################
|
||||
|
||||
#=====================
|
||||
|
@ -190,6 +198,31 @@ for (i in my_lineages_comp_l2){
|
|||
|
||||
}
|
||||
|
||||
|
||||
# adjusted p-value: bonferroni
|
||||
ks_df_l2$p_adj_bonferroni = p.adjust(ks_df_l2$ks_pvalue, method = "bonferroni")
|
||||
ks_df_l2$signif_bon = ks_df_l2$p_adj_bonferroni
|
||||
ks_df_l2 = dplyr::mutate(ks_df_l2
|
||||
, signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
, signif_bon <=0.0001 ~ '****'
|
||||
, signif_bon <=0.001 ~ '***'
|
||||
, signif_bon <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# adjusted p-value:fdr
|
||||
ks_df_l2$p_adj_fdr = p.adjust(ks_df_l2$ks_pvalue, method = "fdr")
|
||||
ks_df_l2$signif_fdr = ks_df_l2$p_adj_fdr
|
||||
ks_df_l2 = dplyr::mutate(ks_df_l2
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
ks_df_l2
|
||||
|
||||
#=====================
|
||||
# Lineage 3 comparisons
|
||||
#=====================
|
||||
|
@ -234,11 +267,33 @@ for (i in my_lineages_comp_l3){
|
|||
ks_df_l3 = rbind(ks_df_l3, l3_df)
|
||||
|
||||
}
|
||||
######################################################################################
|
||||
|
||||
# adjusted p-value: bonferroni
|
||||
ks_df_l3$p_adj_bonferroni = p.adjust(ks_df_l3$ks_pvalue, method = "bonferroni")
|
||||
ks_df_l3$signif_bon = ks_df_l3$p_adj_bonferroni
|
||||
ks_df_l3 = dplyr::mutate(ks_df_l3
|
||||
, signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
, signif_bon <=0.0001 ~ '****'
|
||||
, signif_bon <=0.001 ~ '***'
|
||||
, signif_bon <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# adjusted p-value:fdr
|
||||
ks_df_l3$p_adj_fdr = p.adjust(ks_df_l3$ks_pvalue, method = "fdr")
|
||||
ks_df_l3$signif_fdr = ks_df_l3$p_adj_fdr
|
||||
ks_df_l3 = dplyr::mutate(ks_df_l3
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
ks_df_l3
|
||||
|
||||
####################################################################
|
||||
# combine all 4 ks_dfs
|
||||
# combine all 3 ks_dfs
|
||||
n_dfs = 3
|
||||
if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
|
||||
all.equal(ncol(ks_df_l1), ncol(ks_df_l2), ncol(ks_df_l3)) ){
|
||||
|
@ -263,12 +318,9 @@ if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
|
|||
, "\nCheck hardcoded value of n_dfs")
|
||||
}
|
||||
|
||||
#--------------
|
||||
# formatting
|
||||
#--------------
|
||||
# add total_n number
|
||||
#ks_df_combined$total_samples_analysed = nrow(df_lin)
|
||||
|
||||
#----------------------------
|
||||
# ADD extra cols: formatting
|
||||
#----------------------------
|
||||
# adding pvalue_signif
|
||||
ks_df_combined$pvalue_signif = ks_df_combined$ks_pvalue
|
||||
str(ks_df_combined$pvalue_signif)
|
||||
|
@ -322,9 +374,31 @@ overall_RS_df$ks_pvalue = ks_pvalue
|
|||
overall_RS_df$n_samples = n_samples_all
|
||||
overall_RS_df$n_samples_total= n_samples_total
|
||||
|
||||
#--------------
|
||||
# formatting
|
||||
#--------------
|
||||
#----------------------------
|
||||
# ADD extra cols
|
||||
#----------------------------
|
||||
# adjusted p-value: bonferroni
|
||||
overall_RS_df$p_adj_bonferroni = p.adjust(overall_RS_df$ks_pvalue, method = "bonferroni")
|
||||
overall_RS_df$signif_bon = overall_RS_df$p_adj_bonferroni
|
||||
overall_RS_df = dplyr::mutate(overall_RS_df
|
||||
, signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
, signif_bon <=0.0001 ~ '****'
|
||||
, signif_bon <=0.001 ~ '***'
|
||||
, signif_bon <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# adjusted p-value:fdr
|
||||
overall_RS_df$p_adj_fdr = p.adjust(overall_RS_df$ks_pvalue, method = "fdr")
|
||||
overall_RS_df$signif_fdr = overall_RS_df$p_adj_fdr
|
||||
overall_RS_df = dplyr::mutate(overall_RS_df
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
# unadjusted p-values
|
||||
overall_RS_df$pvalue_signif = overall_RS_df$ks_pvalue
|
||||
overall_RS_df = dplyr::mutate(overall_RS_df
|
||||
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
|
||||
|
@ -333,8 +407,6 @@ overall_RS_df = dplyr::mutate(overall_RS_df
|
|||
, pvalue_signif <=0.01 ~ '**'
|
||||
, pvalue_signif <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
overall_RS_df
|
||||
#####################################################################
|
||||
if (all(colnames(ks_df_combined_f) == colnames(overall_RS_df))){
|
||||
|
||||
|
@ -349,20 +421,12 @@ ks_df_combined_f2 = rbind(ks_df_combined_f, overall_RS_df)
|
|||
ks_df_combined_f2$ks_comp_type = "between_lineages"
|
||||
ks_df_combined_f2$gene_name = tolower(gene)
|
||||
|
||||
# #==============================
|
||||
# # write output file: KS test
|
||||
# #===============================
|
||||
# Out_lineage_bwL = paste0(outdir_stats
|
||||
# , tolower(gene)
|
||||
# , "_ks_lineage_bw.csv")
|
||||
#
|
||||
# cat("Output of KS test bt lineage:", Out_lineage_bwL)
|
||||
# write.csv(ks_df_combined_f2, Out_lineage_bwL, row.names = FALSE)
|
||||
ks_df_combined_f2
|
||||
|
||||
###########################################################################
|
||||
#=======================
|
||||
#=================================
|
||||
# Within lineage R vs S: MANUAL
|
||||
#=======================
|
||||
#=================================
|
||||
lin1 = df_lin[df_lin$lineage == my_lin1,]
|
||||
ks.test(lin1$avg_stability_scaled[lin1$sensitivity == "R"]
|
||||
, lin1$avg_stability_scaled[lin1$sensitivity == "S"])
|
||||
|
@ -426,35 +490,49 @@ for (i in c(my_lin1
|
|||
}
|
||||
all_within_lin_df
|
||||
|
||||
all_within_lin_df$pvalue_signif = all_within_lin_df$ks_pvalue
|
||||
str(all_within_lin_df$pvalue_signif)
|
||||
|
||||
#----------------------------
|
||||
# ADD extra cols: formatting
|
||||
#----------------------------
|
||||
# adjusted p-value: bonferroni
|
||||
all_within_lin_df$p_adj_bonferroni = p.adjust(all_within_lin_df$ks_pvalue, method = "bonferroni")
|
||||
all_within_lin_df$signif_bon = all_within_lin_df$p_adj_bonferroni
|
||||
all_within_lin_df = dplyr::mutate(all_within_lin_df
|
||||
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
|
||||
, pvalue_signif <=0.0001 ~ '****'
|
||||
, pvalue_signif <=0.001 ~ '***'
|
||||
, pvalue_signif <=0.01 ~ '**'
|
||||
, pvalue_signif <0.05 ~ '*'
|
||||
, signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
, signif_bon <=0.0001 ~ '****'
|
||||
, signif_bon <=0.001 ~ '***'
|
||||
, signif_bon <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
all_within_lin_df
|
||||
# adjusted p-value:fdr
|
||||
all_within_lin_df$p_adj_fdr = p.adjust(all_within_lin_df$ks_pvalue, method = "fdr")
|
||||
all_within_lin_df$signif_fdr = all_within_lin_df$p_adj_fdr
|
||||
all_within_lin_df = dplyr::mutate(all_within_lin_df
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_fdr <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# ADD extra cols
|
||||
# unadjusted p-value
|
||||
all_within_lin_df$pvalue_signif = all_within_lin_df$ks_pvalue
|
||||
str(all_within_lin_df$pvalue_signif)
|
||||
all_within_lin_df = dplyr::mutate(all_within_lin_df
|
||||
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
|
||||
, pvalue_signif <=0.0001 ~ '****'
|
||||
, pvalue_signif <=0.001 ~ '***'
|
||||
, pvalue_signif <=0.01 ~ '**'
|
||||
, pvalue_signif <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# ADD info cols
|
||||
all_within_lin_df$ks_comp_type = "within_lineages"
|
||||
all_within_lin_df$gene_name = tolower(gene)
|
||||
|
||||
# #--------------------
|
||||
# # write output file: KS test within grpup
|
||||
# #----------------------
|
||||
# Out_ks_withinL = paste0(outdir_stats
|
||||
# , tolower(gene)
|
||||
# , "_ks_lineage_within.csv")
|
||||
# cat("Output of KS test within lineage:",Out_ks_withinL )
|
||||
# write.csv(all_within_lin_df, Out_ks_withinL, row.names = FALSE)
|
||||
|
||||
##################################################################
|
||||
|
||||
if (all(colnames(ks_df_combined_f2) == colnames(Out_ks_withinL))){
|
||||
if (all(colnames(ks_df_combined_f2) == colnames(all_within_lin_df))){
|
||||
|
||||
cat("\nPASS:combining KS test results")
|
||||
}else{
|
||||
|
@ -469,5 +547,6 @@ ks_df_combined_all = rbind(ks_df_combined_f2, all_within_lin_df)
|
|||
Out_ks_all = paste0(outdir_stats
|
||||
, tolower(gene)
|
||||
, "_ks_lineage_all_comp.csv")
|
||||
|
||||
cat("Output of KS test all comparisons:", Out_ks_all )
|
||||
write.csv(ks_df_combined_all, Out_ks_all, row.names = FALSE)
|
||||
write.csv(ks_df_combined_all, Out_ks_all, row.names = FALSE)
|
||||
|
|
|
@ -21,116 +21,190 @@ geneL_normal = c("pnca")
|
|||
geneL_na = c("gid", "rpob")
|
||||
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
|
||||
|
||||
# LigDist_colname # from globals used
|
||||
# ppi2Dist_colname #from globals used
|
||||
# naDist_colname #from globals used
|
||||
|
||||
common_cols = c("mutationinformation"
|
||||
, "X5uhc_position"
|
||||
, "X5uhc_offset"
|
||||
, "position"
|
||||
, "dst_mode"
|
||||
, "mutation_info_labels"
|
||||
, "sensitivity", dist_columns )
|
||||
# counting
|
||||
foo = merged_df3[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, "avg_lig_affinity"
|
||||
, "avg_lig_affinity_scaled"
|
||||
, "avg_lig_affinity_outcome"
|
||||
, "ligand_distance"
|
||||
, "ligand_affinity_change"
|
||||
, "affinity_scaled"
|
||||
, "ligand_outcome"
|
||||
, "consurf_colour_rev"
|
||||
, "consurf_outcome")]
|
||||
|
||||
#===================
|
||||
# stability cols
|
||||
#===================
|
||||
raw_cols_stability = c("duet_stability_change"
|
||||
, "deepddg"
|
||||
, "ddg_dynamut2"
|
||||
, "ddg_foldx"
|
||||
, "avg_stability")
|
||||
table(foo$consurf_outcome)
|
||||
|
||||
scaled_cols_stability = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
, "foldx_scaled"
|
||||
, "foldx_scaled_signC" # needed to get avg stability
|
||||
, "avg_stability_scaled")
|
||||
foo2 = foo[foo$ligand_distance<10,]
|
||||
|
||||
outcome_cols_stability = c("duet_outcome"
|
||||
, "deepddg_outcome"
|
||||
, "ddg_dynamut2_outcome"
|
||||
, "foldx_outcome"
|
||||
, "avg_stability_outcome")
|
||||
table(foo2$ligand_outcome)
|
||||
|
||||
all_stability_cols = c(raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
, outcome_cols_stability)
|
||||
#===================
|
||||
# affinity cols
|
||||
#===================
|
||||
raw_cols_affinity = c("ligand_affinity_change"
|
||||
, "mmcsm_lig"
|
||||
, "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_affinity"
|
||||
, "avg_lig_affinity")
|
||||
#############################
|
||||
# wide plots SNP
|
||||
# DRUG
|
||||
length(aa_pos_drug); aa_pos_drug
|
||||
drug = foo[foo$position%in%aa_pos_drug,]
|
||||
drug$wild_pos
|
||||
|
||||
scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled"
|
||||
, "mcsm_ppi2_scaled"
|
||||
, "mcsm_na_scaled"
|
||||
, "avg_lig_affinity_scaled")
|
||||
length(unique(drug$position)); unique(drug$position)
|
||||
table(drug$position)
|
||||
|
||||
outcome_cols_affinity = c( "ligand_outcome"
|
||||
, "mmcsm_lig_outcome"
|
||||
, "mcsm_ppi2_outcome"
|
||||
, "mcsm_na_outcome"
|
||||
, "avg_lig_affinity_outcome")
|
||||
drug$mutationinformation[drug$position==306]
|
||||
drug$mutationinformation[drug$position==303]
|
||||
|
||||
all_affinity_cols = c(raw_cols_affinity
|
||||
, scaled_cols_affinity
|
||||
, outcome_cols_affinity)
|
||||
#===================
|
||||
# conservation cols
|
||||
#===================
|
||||
raw_cols_conservation = c("consurf_score"
|
||||
, "snap2_score"
|
||||
, "provean_score")
|
||||
#CA
|
||||
length(aa_pos_ca); aa_pos_ca
|
||||
ca = foo[foo$position%in%aa_pos_ca,]
|
||||
ca$position; length(unique(ca$position))
|
||||
table(ca$position)
|
||||
|
||||
scaled_cols_conservation = c("consurf_scaled"
|
||||
, "snap2_scaled"
|
||||
, "provean_scaled")
|
||||
# DSL
|
||||
length(aa_pos_dsl); aa_pos_dsl
|
||||
dsl= foo[foo$position%in%aa_pos_dsl,]
|
||||
dsl$position; length(unique(dsl$position))
|
||||
table(dsl$position)
|
||||
|
||||
outcome_cols_conservation = c("provean_outcome"
|
||||
, "snap2_outcome"
|
||||
, "consurf_colour_rev"
|
||||
, "consurf_outcome")
|
||||
|
||||
all_conserv_cols = c(raw_cols_conservation
|
||||
, scaled_cols_conservation
|
||||
, outcome_cols_conservation)
|
||||
dsl$mutationinformation[dsl$position==330]
|
||||
dsl$mutationinformation[dsl$position==438]
|
||||
dsl$mutationinformation[dsl$position==439]
|
||||
dsl$mutationinformation[dsl$position==510]
|
||||
|
||||
|
||||
|
||||
########################################
|
||||
categ_cols_to_factor = grep( "_outcome|_info", colnames(merged_df3) )
|
||||
fact_cols = colnames(merged_df3)[categ_cols_to_factor]
|
||||
# CDL
|
||||
length(aa_pos_cdl); aa_pos_cdl
|
||||
cdl= foo[foo$position%in%aa_pos_cdl,]
|
||||
length(unique(cdl$position)); cdl$position;
|
||||
table(cdl$position)
|
||||
|
||||
if (any(lapply(merged_df3[, fact_cols], class) == "character")){
|
||||
cat("\nChanging", length(categ_cols_to_factor), "cols to factor")
|
||||
merged_df3[, fact_cols] <- lapply(merged_df3[, fact_cols], as.factor)
|
||||
if (all(lapply(merged_df3[, fact_cols], class) == "factor")){
|
||||
cat("\nSuccessful: cols changed to factor")
|
||||
}
|
||||
cdl$mutationinformation[cdl$position==456]
|
||||
cdl$mutationinformation[cdl$position==521]
|
||||
cdl$mutationinformation[cdl$position==554]
|
||||
cdl$mutationinformation[cdl$position==568]
|
||||
cdl$mutationinformation[cdl$position==575]
|
||||
cdl$mutationinformation[cdl$position==580]
|
||||
cdl$mutationinformation[cdl$position==658]
|
||||
cdl$mutationinformation[cdl$position==665]
|
||||
|
||||
###############################################
|
||||
# OR plot
|
||||
|
||||
bar = merged_df3[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, affinity_dist_colnames
|
||||
, "or_mychisq"
|
||||
, "pval_fisher"
|
||||
#, "pval_chisq"
|
||||
, "neglog_pval_fisher"
|
||||
, "log10_or_mychisq")]
|
||||
|
||||
# bar$p_adj_bonferroni = p.adjust(bar$pval_fisher, method = "bonferroni")
|
||||
# bar$signif_bon = bar$p_adj_bonferroni
|
||||
# bar = dplyr::mutate(bar
|
||||
# , signif_bon = case_when(signif_bon == 0.05 ~ "."
|
||||
# , signif_bon <=0.0001 ~ '****'
|
||||
# , signif_bon <=0.001 ~ '***'
|
||||
# , signif_bon <=0.01 ~ '**'
|
||||
# , signif_bon <0.05 ~ '*'
|
||||
# , TRUE ~ 'ns'))
|
||||
|
||||
bar$p_adj_fdr = p.adjust(bar$pval_fisher, method = "BH")
|
||||
bar$signif_fdr = bar$p_adj_fdr
|
||||
bar = dplyr::mutate(bar
|
||||
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
|
||||
, signif_fdr <=0.0001 ~ '****'
|
||||
, signif_fdr <=0.001 ~ '***'
|
||||
, signif_fdr <=0.01 ~ '**'
|
||||
, signif_bon <0.05 ~ '*'
|
||||
, TRUE ~ 'ns'))
|
||||
|
||||
# sort df
|
||||
bar = bar[order(bar$or_mychisq, decreasing = T), ]
|
||||
bar = bar[, c("mutationinformation"
|
||||
, "wild_pos"
|
||||
, "position"
|
||||
, "sensitivity"
|
||||
, affinity_dist_colnames
|
||||
, "or_mychisq"
|
||||
#, "pval_fisher"
|
||||
#, "pval_chisq"
|
||||
#, "neglog_pval_fisher"
|
||||
#, "log10_or_mychisq"
|
||||
#, "signif_bon"
|
||||
, "p_adj_fdr"
|
||||
, "signif_fdr")]
|
||||
|
||||
table(bar$sensitivity)
|
||||
|
||||
table(bar$or_mychisq>1&bar$signif_fdr) # sen and res ~ OR
|
||||
|
||||
str(bar)
|
||||
sen = bar[bar$or_mychisq<1,]
|
||||
sen = na.omit(sen)
|
||||
|
||||
res = bar[bar$or_mychisq>1,]
|
||||
res = na.omit(res)
|
||||
|
||||
# comp
|
||||
bar_or = bar[!is.na(bar$or_mychisq),]
|
||||
table(bar_or$sensitivity)
|
||||
|
||||
sen1 = bar_or[bar_or$or_mychisq<1,] # sen and res ~OR
|
||||
res1 = bar_or[bar_or$or_mychisq>1,] # sen and res ~OR
|
||||
|
||||
# sanity check
|
||||
if (nrow(bar_or) == nrow(sen1) + nrow(res1) ){
|
||||
cat("\nPASS: df with or successfully sourced"
|
||||
, "\nCalculating % of muts with OR>1")
|
||||
}else{
|
||||
cat("\nRequested cols aready factors")
|
||||
stop("Abort: df with or numbers mimatch")
|
||||
}
|
||||
|
||||
cat("\ncols changed to factor are:\n", colnames(merged_df3)[categ_cols_to_factor] )
|
||||
# percent for OR muts
|
||||
pc_orR = nrow(res1)/(nrow(sen1) + nrow(res1)); pc_orR
|
||||
cat("\nPercentage of muts with OR>1 i.e resistant:"
|
||||
, pc_orR *100 )
|
||||
|
||||
####################################
|
||||
# merged_df3: NECESSARY pre-processing
|
||||
###################################
|
||||
#df3 = merged_df3
|
||||
plot_cols = c("mutationinformation", "mutation_info_labels", "position", "dst_mode"
|
||||
, all_cols)
|
||||
# muts with highest OR
|
||||
head(bar_or$mutationinformation, 10)
|
||||
|
||||
# sort df
|
||||
bar_or = bar_or[order(bar_or$or_mychisq
|
||||
, bar_or$ligand_distance
|
||||
, bar_or$interface_dist
|
||||
, decreasing = T), ]
|
||||
|
||||
bar_or$drug_site = ifelse(bar_or$position%in%aa_pos_drug, "drug", "no")
|
||||
table(bar_or$drug_site)
|
||||
|
||||
bar_or$dsl_site = ifelse(bar_or$position%in%aa_pos_dsl, "dsl", "no")
|
||||
table(bar_or$dsl_site)
|
||||
|
||||
bar_or$ca_site = ifelse(bar_or$position%in%aa_pos_ca, "ca", "no")
|
||||
table(bar_or$ca_site)
|
||||
|
||||
bar_or$cdl_site = ifelse(bar_or$position%in%aa_pos_cdl, "cdl", "no")
|
||||
table(bar_or$cdl_site)
|
||||
|
||||
|
||||
top10_or = bar_or[1:10,]
|
||||
|
||||
# are these active sites
|
||||
top10_or$position[top10_or$position%in%active_aa_pos]
|
||||
|
||||
|
||||
all_cols = c(common_cols
|
||||
, all_stability_cols
|
||||
, all_affinity_cols
|
||||
, all_conserv_cols)
|
||||
# clostest most sig
|
||||
bar_or_lig = bar_or[bar_or$ligand_distance<10,]
|
||||
bar_or_lig = bar_or_lig[order(bar_or_lig$ligand_distance, -bar_or_lig$or_mychisq), ]
|
||||
table(bar_or_lig$signif_fdr)
|
||||
|
||||
|
||||
bar_or_ppi = bar_or[bar_or$interface_dist<10,]
|
||||
bar_or_ppi = bar_or_ppi[order(bar_or_ppi$interface_dist, -bar_or_ppi$or_mychisq), ]
|
||||
table(bar_or_ppi$signif_fdr)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue