saving logoplot attempts
This commit is contained in:
parent
a5fdf01d25
commit
3612ef0f2d
3 changed files with 119 additions and 27 deletions
|
@ -1,8 +1,15 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
|
#https://www.biostars.org/p/336891/
|
||||||
|
#python Mutate.py -v -o /path/to/output.fasta mutation_map_file.csv input.fasta
|
||||||
|
|
||||||
|
# pnca_all_muts_msa_FIXME: This should be formatted like this from python script
|
||||||
|
# change to a cmd script that takes this "prefix" as an input
|
||||||
|
for i in $(cat pnca_all_muts_msa_FIXME.csv); do echo "3PL1,${i}"; done > pnca_copy.txt
|
||||||
|
|
||||||
# make sure there is no new line at the end of the mutation file (snps.csv)
|
# make sure there is no new line at the end of the mutation file (snps.csv)
|
||||||
#python3 Mutate.py -v -o /home/tanu/git/Data/pyrazinamide/input/output.fasta mut_map.csv 3pl1.fasta.txt
|
#python3 Mutate.py -v -o /home/tanu/git/Data/pyrazinamide/input/output.fasta mut_map.csv 3pl1.fasta.txt
|
||||||
python3 mutate.py -v -o /home/tanu/git/Data/pyrazinamide/output/pnca_msa.txt /home/tanu/git/Data/pyrazinamide/output/pnca_all_muts_msa.csv /home/tanu/git/Data/pyrazinamide/input/3pl1.fasta.txt
|
python3 mutate.py -v -o /home/tanu/git/Data/pyrazinamide/output/pnca_msa.txt /home/tanu/git/Data/pyrazinamide/output/pnca_all_muts_msa.csv /home/tanu/git/Data/pyrazinamide/input/pnca_fasta.txt
|
||||||
|
|
||||||
# remove fasta style header lines in the output i.e
|
# remove fasta style header lines in the output i.e
|
||||||
# lines beginning with '>' so the file is just the mutated seqs
|
# lines beginning with '>' so the file is just the mutated seqs
|
||||||
|
|
|
@ -139,3 +139,5 @@ if(!require(bio3d)){
|
||||||
library(bio3d)
|
library(bio3d)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#install.packages("protr")
|
||||||
|
library(protr)
|
||||||
|
|
|
@ -57,12 +57,13 @@ plot_logo_plot = paste0(plotdir,"/", logo_plot)
|
||||||
# REASSIGNMENT
|
# REASSIGNMENT
|
||||||
#my_data = merged_df2
|
#my_data = merged_df2
|
||||||
#my_data = merged_df2_comp
|
#my_data = merged_df2_comp
|
||||||
#my_data = merged_df3
|
my_data = merged_df3
|
||||||
my_data = merged_df3_comp
|
my_data = merged_df3_comp
|
||||||
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
# delete variables not required
|
# delete variables not required
|
||||||
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
|
rm(merged_df2, merged_df2_comp)
|
||||||
|
#rm(merged_df3, merged_df3_comp)
|
||||||
|
|
||||||
# quick checks
|
# quick checks
|
||||||
colnames(my_data)
|
colnames(my_data)
|
||||||
|
@ -107,40 +108,63 @@ foo = my_data_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq"
|
||||||
, "mut_prop_polarity", "mut_prop_water") ]
|
, "mut_prop_polarity", "mut_prop_water") ]
|
||||||
|
|
||||||
my_data_snp$log10or = log10(my_data_snp$or_mychisq)
|
my_data_snp$log10or = log10(my_data_snp$or_mychisq)
|
||||||
bar = my_data_snp[, c("position", "mutant_type", "or_mychisq", "log10or")]
|
logo_data = my_data_snp[, c("position", "mutant_type", "or_mychisq", "log10or")]
|
||||||
|
|
||||||
|
logo_data_or = my_data_snp[, c("position", "mutant_type", "or_mychisq")]
|
||||||
|
wide_df_or <- logo_data_or %>% spread(position, or_mychisq, fill = 0.0)
|
||||||
|
|
||||||
bar_or = my_data_snp[, c("position", "mutant_type", "or_mychisq")]
|
|
||||||
wide_df_or <- bar_or %>% spread(position, or_mychisq, fill = 0)
|
|
||||||
wide_df_or = as.matrix(wide_df_or)
|
wide_df_or = as.matrix(wide_df_or)
|
||||||
rownames(wide_df_or) = wide_df_or[,1]
|
rownames(wide_df_or) = wide_df_or[,1]
|
||||||
wide_df_or = wide_df_or[,-1]
|
wide_df_or = wide_df_or[,-1]
|
||||||
|
|
||||||
|
position_or = as.numeric(colnames(wide_df_or))
|
||||||
|
|
||||||
|
#===========================================
|
||||||
|
#custom height (OR) logo plot: CORRECT x-axis labelling
|
||||||
|
#============================================
|
||||||
# custom height (OR) logo plot: yayy works
|
# custom height (OR) logo plot: yayy works
|
||||||
|
|
||||||
ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") +
|
ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") +
|
||||||
theme(legend.position = "bottom"
|
theme(legend.position = "bottom"
|
||||||
, axis.text.x = element_text(size = 11
|
, axis.text.x = element_text(size = 11
|
||||||
, angle = 90
|
, angle = 90
|
||||||
, hjust = 1
|
, hjust = 1
|
||||||
, vjust = 0.4)
|
, vjust = 0.4)
|
||||||
, axis.text.y = element_text(size = 15
|
, axis.text.y = element_text(size = 15
|
||||||
, angle = 0
|
, angle = 0
|
||||||
, hjust = 1
|
, hjust = 1
|
||||||
, vjust = 0))+
|
, vjust = 0))+
|
||||||
labs(title = "AA logo plot"
|
scale_x_discrete("Position"
|
||||||
, x = "Wild-type position"
|
#, breaks
|
||||||
, y = "OR")
|
, labels = position_or
|
||||||
|
, limits = factor(1:length(position_or))) +
|
||||||
|
ylab("Odds Ratio")
|
||||||
|
|
||||||
#%% end of logo plot with OR as height
|
#%% end of logo plot with OR as height
|
||||||
|
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
# extracting data with log10R
|
# extracting data with log10R
|
||||||
bar_logor = my_data_snp[, c("position", "mutant_type", "log10or")]
|
logo_data_logor = my_data_snp[, c("position", "mutant_type", "log10or")]
|
||||||
wide_df_logor <- bar_logor %>% spread(position, log10or, fill = 0)
|
wide_df_logor <- logo_data_logor %>% spread(position, log10or, fill = 0.0)
|
||||||
|
|
||||||
wide_df_logor = as.matrix(wide_df_logor)
|
wide_df_logor = as.matrix(wide_df_logor)
|
||||||
|
|
||||||
rownames(wide_df_logor) = wide_df_logor[,1]
|
rownames(wide_df_logor) = wide_df_logor[,1]
|
||||||
wide_df_logor = wide_df_logor[,-1]
|
wide_df_logor = subset(wide_df_logor, select = -c(1) )
|
||||||
|
colnames(wide_df_logor)
|
||||||
|
wide_df_logor_m = data.matrix(wide_df_logor)
|
||||||
|
|
||||||
|
rownames(wide_df_logor_m)
|
||||||
|
colnames(wide_df_logor_m)
|
||||||
|
|
||||||
|
# FIXME
|
||||||
|
#my_ylim_up = as.numeric(max(wide_df_logor_m)) * 5
|
||||||
|
#my_ylim_low = as.numeric(min(wide_df_logor_m))
|
||||||
|
|
||||||
|
position_logor = as.numeric(colnames(wide_df_logor_m))
|
||||||
|
|
||||||
# custom height (log10OR) logo plot: yayy works
|
# custom height (log10OR) logo plot: yayy works
|
||||||
ggseqlogo(wide_df_logor, method="custom", seq_type="aa") + ylab("my custom height") +
|
ggseqlogo(wide_df_logor_m, method="custom", seq_type="aa") + ylab("my custom height") +
|
||||||
theme(legend.position = "bottom"
|
theme(legend.position = "bottom"
|
||||||
, axis.text.x = element_text(size = 11
|
, axis.text.x = element_text(size = 11
|
||||||
, angle = 90
|
, angle = 90
|
||||||
|
@ -150,9 +174,12 @@ ggseqlogo(wide_df_logor, method="custom", seq_type="aa") + ylab("my custom heigh
|
||||||
, angle = 0
|
, angle = 0
|
||||||
, hjust = 1
|
, hjust = 1
|
||||||
, vjust = 0))+
|
, vjust = 0))+
|
||||||
labs(title = "AA logo plot"
|
scale_x_discrete("Position"
|
||||||
, x = "Wild-type position"
|
#, breaks
|
||||||
, y = "Log10(OR)")
|
, labels = position_logor
|
||||||
|
, limits = factor(1:length(position_logor)))+
|
||||||
|
ylab("Log (Odds Ratio)") +
|
||||||
|
scale_y_continuous(limits = c(0, 9))
|
||||||
|
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
#%% logo plot from sequence
|
#%% logo plot from sequence
|
||||||
|
@ -167,7 +194,7 @@ library(Logolas)
|
||||||
# data was pnca_msa.txt
|
# data was pnca_msa.txt
|
||||||
#FIXME: generate this file
|
#FIXME: generate this file
|
||||||
|
|
||||||
seqs = read.csv("~/git//Data/pyrazinamide/snp_seqsfile.txt"
|
seqs = read.csv("~/git/Data/pyrazinamide/output/pnca_msa.txt"
|
||||||
, header = FALSE
|
, header = FALSE
|
||||||
, stringsAsFactors = FALSE)$V1
|
, stringsAsFactors = FALSE)$V1
|
||||||
|
|
||||||
|
@ -175,7 +202,63 @@ seqs = read.csv("~/git//Data/pyrazinamide/snp_seqsfile.txt"
|
||||||
# my_data: useful!
|
# my_data: useful!
|
||||||
logomaker(seqs, type = "EDLogo", color_type = "per_symbol"
|
logomaker(seqs, type = "EDLogo", color_type = "per_symbol"
|
||||||
, return_heights = TRUE)
|
, return_heights = TRUE)
|
||||||
logomaker(seqs, type = "Logo", color_type = "per_symbol")
|
|
||||||
|
logomaker(seqs, type = "Logo", color_type = "per_symbol", return_heights = TRUE)
|
||||||
|
|
||||||
#%% end of script
|
#%% end of script
|
||||||
#=======================================================================
|
#=======================================================================
|
||||||
|
#==============
|
||||||
|
# online logo:
|
||||||
|
#http://www.cbs.dtu.dk/biotools/Seq2Logo/ # good for getting pssm and psfm matrices
|
||||||
|
#https://weblogo.berkeley.edu/logo.cgi
|
||||||
|
#http://weblogo.threeplusone.com/create.cgi # weblogo3
|
||||||
|
|
||||||
|
#===============
|
||||||
|
# PSSM logos= example from logomaker
|
||||||
|
#===============
|
||||||
|
|
||||||
|
data(pssm)
|
||||||
|
logo_pssm(pssm, control = list(round_off = 0))
|
||||||
|
|
||||||
|
#=================
|
||||||
|
# PSSM: output from http://www.cbs.dtu.dk/biotools/Seq2Logo/
|
||||||
|
# of MSA: pnca_msa.txt
|
||||||
|
#==================
|
||||||
|
foo = read.csv("/home/tanu/git/Data/pyrazinamide/pssm_transpose.csv")
|
||||||
|
rownames(foo) = foo[,1]
|
||||||
|
df = subset(foo, select = -c(1) )
|
||||||
|
colnames(df)
|
||||||
|
colnames(df) = seq(1:length(df))
|
||||||
|
|
||||||
|
df_m = as.matrix(df)
|
||||||
|
logo_pssm(df_m, control = list(round_off = 0))
|
||||||
|
|
||||||
|
#=================
|
||||||
|
# # PSFM: output from http://www.cbs.dtu.dk/biotools/Seq2Logo/
|
||||||
|
# of MSA: pnca_msa.txt
|
||||||
|
#=================
|
||||||
|
# not designed for PSFM!
|
||||||
|
# may want to figure out how to do it!
|
||||||
|
logo_data = read.csv("/home/tanu/git/Data/pyrazinamide/psfm_transpose.csv")
|
||||||
|
rownames(logo_data) = logo_data[,1]
|
||||||
|
df2 = subset(logo_data, select = -c(1) )
|
||||||
|
colnames(df2)
|
||||||
|
colnames(df2) = seq(1:length(df2))
|
||||||
|
|
||||||
|
df2_m = as.matrix(df2)
|
||||||
|
logo_pssm(df2_m, control = list(round_off = 0))
|
||||||
|
|
||||||
|
|
||||||
|
#=================
|
||||||
|
# ggplots:
|
||||||
|
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
|
||||||
|
#=================
|
||||||
|
|
||||||
|
library(ggplot2)
|
||||||
|
library(gglogo)
|
||||||
|
ggplot(data = ggfortify(sequences, "peptide")) +
|
||||||
|
geom_logo(aes(x=position, y=bits, group=element,
|
||||||
|
label=element, fill=interaction(Polarity, Water)),
|
||||||
|
alpha = 0.6) +
|
||||||
|
scale_fill_brewer(palette="Paired") +
|
||||||
|
theme(legend.position = "bottom")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue