aadded colnames to plot as names
This commit is contained in:
parent
4315adc556
commit
2f7558a883
3 changed files with 314 additions and 168 deletions
|
@ -327,7 +327,6 @@ combining_dfs_plotting <- function( my_df_u
|
|||
stop("Cannot generate merged_df3")
|
||||
}
|
||||
##################################################################
|
||||
|
||||
head(merged_df3$position); tail(merged_df3$position) # should be sorted
|
||||
|
||||
# sanity check
|
||||
|
@ -391,6 +390,301 @@ combining_dfs_plotting <- function( my_df_u
|
|||
stop("Abort: merged_df3 or merged_df2 can't be created because of lable mismatch")
|
||||
}
|
||||
|
||||
##########################################################################
|
||||
# MERGED_df2: average cols #
|
||||
# Average stability + lig-affinity columns #
|
||||
##########################################################################
|
||||
|
||||
#=====================================
|
||||
# merged_df2: Stability values: average
|
||||
#====================================
|
||||
#------------------------------
|
||||
# foldx sign reverse
|
||||
# for consistency with other tools
|
||||
#----------------------------------
|
||||
head(merged_df2$ddg_foldx)
|
||||
|
||||
# foldx values: reverse signs
|
||||
#merged_df2['ddg_foldxC'] = abs(merged_df2$ddg_foldx)
|
||||
#head(merged_df2[, c("ddg_foldx", "ddg_foldxC")])
|
||||
|
||||
# foldx scaled: reverse signs fs
|
||||
merged_df2['foldx_scaled_signC'] = abs(merged_df2$foldx_scaled)
|
||||
head(merged_df2[, c("foldx_scaled", "foldx_scaled_signC")])
|
||||
|
||||
# find which stability cols to average: should contain revised foldx
|
||||
scaled_cols_stab = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
, "foldx_scaled_signC" # needed to get avg stability
|
||||
)
|
||||
|
||||
#-----------------------------------------------
|
||||
# merged_df2: ADD col: average across predictors: stability
|
||||
#-----------------------------------------------
|
||||
if (all((scaled_cols_stab%in%colnames(merged_df2)))){
|
||||
cat("\nPASS: finding stability cols to average")
|
||||
cols2avg_stab = scaled_cols_stab
|
||||
cat("\nAveraging", length(cols2avg_stab), "stability columns:"
|
||||
, "\nThese are:", cols2avg_stab)
|
||||
|
||||
merged_df2['avg_stability'] = rowMeans(merged_df2[, cols2avg_stab])
|
||||
}else{
|
||||
stop("\nAbort: Foldx column has opposing sign. Can't proceed to avergae.")
|
||||
}
|
||||
|
||||
head(merged_df2[, c("mutationinformation"
|
||||
, "position"
|
||||
, "foldx_scaled"
|
||||
, scaled_cols_stab
|
||||
, "avg_stability")])
|
||||
#--------------------------------------
|
||||
# merged_df2: ADD col: average stability outcome
|
||||
#--------------------------------------
|
||||
merged_df2["avg_stability_outcome"] = ifelse(merged_df2["avg_stability"] < 0, "Destabilising", "Stabilising")
|
||||
|
||||
head(merged_df2[, c("mutationinformation"
|
||||
, "position"
|
||||
, "avg_stability"
|
||||
, "avg_stability_outcome")])
|
||||
|
||||
table(merged_df2["avg_stability_outcome"] )
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df2: ADD col: average stability scaled
|
||||
#--------------------------------------
|
||||
merged_df2["avg_stability_scaled"] = lapply(merged_df2["avg_stability"]
|
||||
, function(x) {
|
||||
scales::rescale_mid(x
|
||||
, to = c(-1,1)
|
||||
, from = c( min(merged_df2["avg_stability"])
|
||||
, max(merged_df2["avg_stability"]))
|
||||
, mid = 0)
|
||||
})
|
||||
|
||||
if ( all(table(merged_df2["avg_stability"]<0) == table(merged_df2["avg_stability_scaled"]<0)) ){
|
||||
cat("\nPASS: Avergae stability column successfully averaged, scaled and categorised")
|
||||
|
||||
}else{
|
||||
cat("\nAbort:Avergae stability column could not be processed")
|
||||
}
|
||||
|
||||
head(merged_df2["avg_stability_scaled"])
|
||||
|
||||
##########################################################################################
|
||||
#=====================================
|
||||
# merged_df2: Affinity values: average
|
||||
#======================================
|
||||
|
||||
common_scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled")
|
||||
|
||||
#------------------------------------------------------
|
||||
# merged_df2: ADD col: ensemble average across predictors: affinity
|
||||
#------------------------------------------------------
|
||||
if (all((common_scaled_cols_affinity%in%colnames(merged_df2)))){
|
||||
cat("\nPASS: finding affinity cols to average")
|
||||
cols2avg_aff = common_scaled_cols_affinity
|
||||
merged_df2['avg_lig_affinity'] = rowMeans(merged_df2[, cols2avg_aff])
|
||||
}else{
|
||||
stop("\nAbort: cols to average not found.")
|
||||
}
|
||||
|
||||
head(merged_df2[, c("mutationinformation"
|
||||
, "position"
|
||||
, cols2avg_aff
|
||||
, "avg_lig_affinity")])
|
||||
|
||||
table(merged_df2$affinity_scaled<0 )
|
||||
table(merged_df2$mmcsm_lig_scaled<0 )
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df2: ADD col: average affinity outcome
|
||||
#--------------------------------------
|
||||
merged_df2["avg_lig_affinity_outcome"] = ifelse(merged_df2["avg_lig_affinity"] < 0, "Destabilising", "Stabilising")
|
||||
|
||||
head(merged_df2[, c("mutationinformation"
|
||||
, "position"
|
||||
, "avg_lig_affinity"
|
||||
, "avg_lig_affinity_outcome")])
|
||||
|
||||
table(merged_df2["avg_lig_affinity_outcome"] )
|
||||
|
||||
min( merged_df2['avg_lig_affinity']); max( merged_df2['avg_lig_affinity'])
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df2: ADD col: average affinity scaled
|
||||
#--------------------------------------
|
||||
merged_df2["avg_lig_affinity_scaled"] = lapply(merged_df2["avg_lig_affinity"]
|
||||
, function(x) {
|
||||
scales::rescale_mid(x
|
||||
, to = c(-1,1)
|
||||
, from = c( min(merged_df2["avg_lig_affinity"])
|
||||
, max(merged_df2["avg_lig_affinity"]))
|
||||
, mid = 0)
|
||||
})
|
||||
|
||||
if ( all(table(merged_df2["avg_lig_affinity"]<0) == table(merged_df2["avg_lig_affinity_scaled"]<0)) ){
|
||||
cat("\nPASS: Avergae affinity column successfully averaged, scaled and categorised")
|
||||
|
||||
}else{
|
||||
cat("\nAbort:Avergae affinity column could not be processed")
|
||||
}
|
||||
|
||||
min( merged_df2['avg_lig_affinity_scaled']); max( merged_df2['avg_lig_affinity_scaled'])
|
||||
|
||||
######################################################################################
|
||||
|
||||
##########################################################################
|
||||
# MERGED_d3: average cols #
|
||||
# Average stability + lig-affinity columns #
|
||||
##########################################################################
|
||||
|
||||
#==========================================
|
||||
# merged_df3: Stability values: average
|
||||
#==========================================
|
||||
#-------------------
|
||||
# foldx sign reverse
|
||||
# for consistency with other tools
|
||||
#-------------------
|
||||
head(merged_df3$ddg_foldx)
|
||||
|
||||
# foldx values: reverse signs
|
||||
#merged_df3['ddg_foldxC'] = abs(merged_df3$ddg_foldx)
|
||||
#head(merged_df3[, c("ddg_foldx", "ddg_foldxC")])
|
||||
|
||||
# foldx scaled: reverse signs fs
|
||||
merged_df3['foldx_scaled_signC'] = abs(merged_df3$foldx_scaled)
|
||||
head(merged_df3[, c("foldx_scaled", "foldx_scaled_signC")])
|
||||
|
||||
# find which stability cols to average: should contain revised foldx
|
||||
scaled_cols_stab = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
#, "foldx_scaled"
|
||||
, "foldx_scaled_signC" # needed to get avg stability
|
||||
)
|
||||
|
||||
#--------------------------------------------------------
|
||||
# merged_df3: ADD col: ensemble average across predictors: stability
|
||||
#---------------------------------------------------------
|
||||
if (all((scaled_cols_stab%in%colnames(merged_df3)))){
|
||||
cat("\nPASS: finding stability cols to average")
|
||||
cols2avg_stab = scaled_cols_stab
|
||||
cat("\nAveraging", length(cols2avg_stab), "stability columns:"
|
||||
, "\nThese are:", cols2avg_stab)
|
||||
|
||||
merged_df3['avg_stability'] = rowMeans(merged_df3[, cols2avg_stab])
|
||||
}else{
|
||||
stop("\nAbort: Foldx column has opposing sign. Can't proceed to avergae.")
|
||||
}
|
||||
|
||||
head(merged_df3[, c("mutationinformation"
|
||||
, "position"
|
||||
, "foldx_scaled"
|
||||
, scaled_cols_stab
|
||||
, "avg_stability")])
|
||||
#--------------------------------------
|
||||
# merged_df3: ADD col: average stability outcome
|
||||
#--------------------------------------
|
||||
merged_df3["avg_stability_outcome"] = ifelse(merged_df3["avg_stability"] < 0, "Destabilising", "Stabilising")
|
||||
|
||||
head(merged_df3[, c("mutationinformation"
|
||||
, "position"
|
||||
, "avg_stability"
|
||||
, "avg_stability_outcome")])
|
||||
|
||||
table(merged_df3["avg_stability_outcome"] )
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df3: ADD col: average stability scaled
|
||||
#--------------------------------------
|
||||
merged_df3["avg_stability_scaled"] = lapply(merged_df3["avg_stability"]
|
||||
, function(x) {
|
||||
scales::rescale_mid(x
|
||||
, to = c(-1,1)
|
||||
, from = c( min(merged_df3["avg_stability"])
|
||||
, max(merged_df3["avg_stability"]))
|
||||
, mid = 0)
|
||||
})
|
||||
|
||||
if ( all(table(merged_df3["avg_stability"]<0) == table(merged_df3["avg_stability_scaled"]<0)) ){
|
||||
cat("\nPASS: Avergae stability column successfully averaged, scaled and categorised")
|
||||
|
||||
}else{
|
||||
cat("\nAbort:Avergae stability column could not be processed")
|
||||
}
|
||||
|
||||
head(merged_df3["avg_stability_scaled"])
|
||||
|
||||
##########################################################################################
|
||||
#=====================================
|
||||
# merged_df3: Affinity values: average
|
||||
#======================================
|
||||
|
||||
common_scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled")
|
||||
|
||||
#------------------------------------------------------
|
||||
# merged_df3: ADD col: ensemble average across predictors: affinity
|
||||
#------------------------------------------------------
|
||||
if (all((common_scaled_cols_affinity%in%colnames(merged_df3)))){
|
||||
cat("\nPASS: finding affinity cols to average")
|
||||
cols2avg_aff = common_scaled_cols_affinity
|
||||
merged_df3['avg_lig_affinity'] = rowMeans(merged_df3[, cols2avg_aff])
|
||||
}else{
|
||||
stop("\nAbort: cols to average not found.")
|
||||
}
|
||||
|
||||
head(merged_df3[, c("mutationinformation"
|
||||
, "position"
|
||||
, cols2avg_aff
|
||||
, "avg_lig_affinity")])
|
||||
|
||||
table(merged_df3$affinity_scaled<0 )
|
||||
table(merged_df3$mmcsm_lig_scaled<0 )
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df3: ADD col: average affinity outcome
|
||||
#--------------------------------------
|
||||
merged_df3["avg_lig_affinity_outcome"] = ifelse(merged_df3["avg_lig_affinity"] < 0, "Destabilising", "Stabilising")
|
||||
|
||||
head(merged_df3[, c("mutationinformation"
|
||||
, "position"
|
||||
, "avg_lig_affinity"
|
||||
, "avg_lig_affinity_outcome")])
|
||||
|
||||
table(merged_df3["avg_lig_affinity_outcome"] )
|
||||
|
||||
min( merged_df3['avg_lig_affinity']); max( merged_df3['avg_lig_affinity'])
|
||||
|
||||
#--------------------------------------
|
||||
# merged_df3: ADD col: average affinity scaled
|
||||
#--------------------------------------
|
||||
merged_df3["avg_lig_affinity_scaled"] = lapply(merged_df3["avg_lig_affinity"]
|
||||
, function(x) {
|
||||
scales::rescale_mid(x
|
||||
, to = c(-1,1)
|
||||
, from = c( min(merged_df3["avg_lig_affinity"])
|
||||
, max(merged_df3["avg_lig_affinity"]))
|
||||
, mid = 0)
|
||||
})
|
||||
|
||||
if ( all(table(merged_df3["avg_lig_affinity"]<0) == table(merged_df3["avg_lig_affinity_scaled"]<0)) ){
|
||||
cat("\nPASS: Avergae affinity column successfully averaged, scaled and categorised")
|
||||
|
||||
}else{
|
||||
cat("\nAbort:Avergae affinity column could not be processed")
|
||||
}
|
||||
|
||||
min( merged_df3['avg_lig_affinity_scaled']); max( merged_df3['avg_lig_affinity_scaled'])
|
||||
|
||||
|
||||
####################################################################
|
||||
#TODO
|
||||
# Choose few columns to return as plot_df
|
||||
|
||||
####################################################################
|
||||
return(list( merged_df2
|
||||
, merged_df3
|
||||
))
|
||||
|
|
|
@ -150,11 +150,11 @@ linP_dm_om
|
|||
# , "mmcsm_lig_scaled"
|
||||
# , "mcsm_ppi2_scaled"
|
||||
# , "mcsm_na_scaled"
|
||||
# , "avg_affinity_scaled")
|
||||
# , "avg_lig_affinity_scaled")
|
||||
|
||||
# lineage_distP(merged_df2
|
||||
# , with_facet = F
|
||||
# , x_axis = "avg_affinity_scaled"
|
||||
# , x_axis = "avg_lig_affinity_scaled"
|
||||
# , y_axis = "lineage_labels"
|
||||
# , x_lab = my_xlabel
|
||||
# , use_lineages = c("L1", "L2", "L3", "L4")
|
||||
|
|
|
@ -33,17 +33,21 @@ common_cols = c("mutationinformation"
|
|||
raw_cols_stability = c("duet_stability_change"
|
||||
, "deepddg"
|
||||
, "ddg_dynamut2"
|
||||
, "ddg_foldx")
|
||||
, "ddg_foldx"
|
||||
, "avg_stability")
|
||||
|
||||
scaled_cols_stability = c("duet_scaled"
|
||||
, "deepddg_scaled"
|
||||
, "ddg_dynamut2_scaled"
|
||||
, "foldx_scaled")
|
||||
, "foldx_scaled"
|
||||
, "foldx_scaled_signC" # needed to get avg stability
|
||||
, "avg_stability_scaled")
|
||||
|
||||
outcome_cols_stability = c("duet_outcome"
|
||||
, "deepddg_outcome"
|
||||
, "ddg_dynamut2_outcome"
|
||||
, "foldx_outcome")
|
||||
, "foldx_outcome"
|
||||
, "avg_stability_outcome")
|
||||
|
||||
all_stability_cols = c(raw_cols_stability
|
||||
, scaled_cols_stability
|
||||
|
@ -54,17 +58,20 @@ all_stability_cols = c(raw_cols_stability
|
|||
raw_cols_affinity = c("ligand_affinity_change"
|
||||
, "mmcsm_lig"
|
||||
, "mcsm_ppi2_affinity"
|
||||
, "mcsm_na_affinity")
|
||||
, "mcsm_na_affinity"
|
||||
, "avg_lig_affinity")
|
||||
|
||||
scaled_cols_affinity = c("affinity_scaled"
|
||||
, "mmcsm_lig_scaled"
|
||||
, "mcsm_ppi2_scaled"
|
||||
, "mcsm_na_scaled" )
|
||||
, "mcsm_na_scaled"
|
||||
, "avg_lig_affinity_scaled")
|
||||
|
||||
outcome_cols_affinity = c( "ligand_outcome"
|
||||
, "mmcsm_lig_outcome"
|
||||
, "mcsm_ppi2_outcome"
|
||||
, "mcsm_na_outcome")
|
||||
, "mcsm_na_outcome"
|
||||
, "avg_lig_affinity_outcome")
|
||||
|
||||
all_affinity_cols = c(raw_cols_affinity
|
||||
, scaled_cols_affinity
|
||||
|
@ -90,10 +97,6 @@ all_conserv_cols = c(raw_cols_conservation
|
|||
, outcome_cols_conservation)
|
||||
|
||||
|
||||
all_cols = c(common_cols
|
||||
, all_stability_cols
|
||||
, all_affinity_cols
|
||||
, all_conserv_cols)
|
||||
|
||||
########################################
|
||||
categ_cols_to_factor = grep( "_outcome|_info", colnames(merged_df3) )
|
||||
|
@ -118,161 +121,10 @@ cat("\ncols changed to factor are:\n", colnames(merged_df3)[categ_cols_to_factor
|
|||
plot_cols = c("mutationinformation", "mutation_info_labels", "position", "dst_mode"
|
||||
, all_cols)
|
||||
|
||||
df3 = merged_df3[, colnames(merged_df3)%in%plot_cols]
|
||||
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
# DONE: combining_dfs.R
|
||||
# df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
|
||||
# table(df3$sensitivity)
|
||||
|
||||
# ConSurf labels
|
||||
#consurf_colOld = "consurf_colour_rev"
|
||||
#consurf_colNew = "consurf_outcome"
|
||||
#df3[[consurf_colNew]] = df3[[consurf_colOld]]
|
||||
#df3[[consurf_colNew]] = as.factor(df3[[consurf_colNew]])
|
||||
#df3[[consurf_colNew]]
|
||||
# not this bit
|
||||
#!!!!!!!!!!!!!1
|
||||
#levels(df3$consurf_outcome) = c( "nsd", 1, 2, 3, 4, 5, 6, 7, 8, 9)
|
||||
|
||||
#levels(df3$consurf_outcome)
|
||||
|
||||
# SNAP2 labels
|
||||
#snap2_colname = "snap2_outcome"
|
||||
#df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "effect", "Effect")
|
||||
#df3[[snap2_colname]] <- str_replace(df3[[snap2_colname]], "neutral", "Neutral")
|
||||
|
||||
# for ref: not needed perse as function already does this and assigns labels for barplots
|
||||
# labels_duet = levels(as.factor(df3$duet_outcome))
|
||||
# labels_foldx = levels(as.factor(df3$foldx_outcome))
|
||||
# labels_deepddg = levels(as.factor(df3$deepddg_outcome))
|
||||
# labels_ddg_dynamut2_outcome = levels(as.factor(df3$ddg_dynamut2_outcome))
|
||||
#
|
||||
# labels_lig = levels(as.factor(df3_lig$ligand_outcome))
|
||||
# labels_mmlig = levels(as.factor(df3_lig$mmcsm_lig_outcome))
|
||||
# labels_ppi2 = levels(as.factor(df3_ppi2$mcsm_ppi2_outcome))
|
||||
#
|
||||
# labels_provean = levels(as.factor(df3$provean_outcome))
|
||||
# labels_snap2 = levels(as.factor(df3$snap2_outcome))
|
||||
# labels_consurf = levels(as.factor(df3$consurf_colour_rev))
|
||||
# df3$consurf_colour_rev = as.factor(df3$consurf_colour_rev )
|
||||
##############################################################################
|
||||
#######################################
|
||||
# merged_df2: NECESSARY pre-processing
|
||||
######################################
|
||||
df2 = merged_df2
|
||||
|
||||
#=================
|
||||
# PREFORMATTING: for consistency
|
||||
#=================
|
||||
# DONE: combining_dfs.R
|
||||
# df2$sensitivity = ifelse(df2$dst_mode == 1, "R", "S")
|
||||
# table(df2$sensitivity)
|
||||
|
||||
#----------------------------------------------------
|
||||
# Create dst2: fill na in dst with value of dst_mode
|
||||
# for epistasis
|
||||
#----------------------------------------------------
|
||||
# DONE: combining_dfs.R
|
||||
# df2$dst2 = ifelse(is.na(df2$dst), df2$dst_mode, df2f$dst)
|
||||
|
||||
#----------------------------------------------------
|
||||
# reverse signs for foldx scaled values for
|
||||
# to allow average with other tools
|
||||
#----------------------------------------------------
|
||||
head(df2['ddg_foldx'])
|
||||
df2['ddg_foldxC'] = abs(df2$ddg_foldx)
|
||||
head(df2['ddg_foldxC'])
|
||||
|
||||
head(df2['foldx_scaled'])
|
||||
df2['foldx_scaled_signC'] = abs(df2$foldx_scaled)
|
||||
head(df2['foldx_scaled_signC'])
|
||||
|
||||
rm_foldx_cols = c("ddg_foldx","foldx_scaled")
|
||||
raw_cols_stab_revised = raw_cols_stability[!raw_cols_stability%in%rm_foldx_cols]
|
||||
raw_cols_stab_revised = c(raw_cols_stab_revised,"ddg_foldxC")
|
||||
|
||||
scaled_cols_stab_revised = scaled_cols_stability[!scaled_cols_stability%in%rm_foldx_cols]
|
||||
scaled_cols_stab_revised = c(scaled_cols_stab_revised, "foldx_scaled_signC")
|
||||
|
||||
######################################################
|
||||
# Affinity related variables
|
||||
# DONE:in plotting_globals.R
|
||||
# DistCutOff = 10
|
||||
# LigDist_colname # = "ligand_distance" # from globals
|
||||
# ppi2Dist_colname = "interface_dist"
|
||||
# naDist_colname = "TBC"
|
||||
|
||||
######################################################
|
||||
# corr colnames
|
||||
# drug
|
||||
# "dst_mode"
|
||||
# "ligand_distance"
|
||||
# "DUET"
|
||||
# "mCSM-lig"
|
||||
# "FoldX"
|
||||
# "DeepDDG"
|
||||
# "ASA"
|
||||
# "RSA"
|
||||
# "KD"
|
||||
# "RD"
|
||||
# "Consurf"
|
||||
# "SNAP2"
|
||||
# "MAF"
|
||||
# "Log (OR)"
|
||||
# "-Log (P)"
|
||||
# "Dynamut2"
|
||||
# "mCSM-PPI2"
|
||||
# "interface_dist"
|
||||
|
||||
corr_ps_colnames = c("DUET"
|
||||
, "FoldX"
|
||||
, "DeepDDG"
|
||||
, "Dynamut2"
|
||||
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
|
||||
# , "ASA"
|
||||
# , "RSA"
|
||||
# , "KD"
|
||||
# , "RD"
|
||||
# , "Consurf"
|
||||
# , "SNAP2"
|
||||
|
||||
#, "mCSM-lig"
|
||||
#, "ligand_distance"
|
||||
#, "mCSM-PPI2"
|
||||
#, "interface_dist"
|
||||
, "dst_mode"
|
||||
, drug
|
||||
)
|
||||
|
||||
corr_lig_colnames = c("mCSM-lig"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "ligand_distance"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
corr_ppi2_colnames = c("mCSM-PPI2"
|
||||
, "SNAP2"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "interface_dist"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
corr_conservation_cols = c("ConSurf"
|
||||
, "SNAP2"
|
||||
, "PROVEAN"
|
||||
, "MAF"
|
||||
, "Log (OR)"
|
||||
, "-Log (P)"
|
||||
, "dst_mode"
|
||||
, drug)
|
||||
|
||||
all_cols = c(common_cols
|
||||
, all_stability_cols
|
||||
, all_affinity_cols
|
||||
, all_conserv_cols)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue