added pnca plot dir to generate plots that weren#t covered in the paper

This commit is contained in:
Tanushree Tunstall 2022-09-05 14:02:04 +01:00
parent 1dacebbaf6
commit 2cec743ae0
8 changed files with 1391 additions and 0 deletions

View file

@ -0,0 +1,364 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Barplots
# basic barplots with outcome
# basic barplots with frequency of count of mutations
#########################################################
#=============
# Data: Input
#==============
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
#cat("\nSourced plotting cols as well:", length(plotting_cols))
####################################################
class(merged_df3)
df3 = subset(merged_df3, select = -c(pos_count))
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)
##########################################################
# blue, red bp
sts = 8
lts = 8
ats = 8
als = 8
ltis = 8
geom_ls = 2.2
#pos_count
subtitle_size = 8
geom_ls_pc = 2.2
leg_text_size = 8
axis_text_size = 8
axis_label_size = 8
###########################################################
#------------------------------
# plot default sizes
#------------------------------
#=========================
# Affinity outcome
# check this var: outcome_cols_affinity
# get from preformatting or put in globals
#==========================
DistCutOff
LigDist_colname # = "ligand_distance" # from globals
ppi2Dist_colname
naDist_colname
###########################################################
# get plotting data within the distance
df3_lig = df3[df3[[LigDist_colname]]<DistCutOff,]
df3_ppi2 = df3[df3[[ppi2Dist_colname]]<DistCutOff,]
df3_na = df3[df3[[naDist_colname]]<DistCutOff,]
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
#------------------------------
# barplot for ligand affinity:
# <10 Ang of ligand
#------------------------------
mLigP = stability_count_bp(plotdf = df3_lig
, df_colname = "ligand_outcome"
#, leg_title = "mCSM-lig"
#, bp_plot_title = paste(common_bp_title, "ligand")
, yaxis_title = "Number of nsSNPs"
, leg_position = "none"
, subtitle_text = "mCSM\nLig"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = sts
, lts = lts
, ats = ats
, als = als
, ltis = ltis
, geom_ls = geom_ls
)
mLigP
#------------------------------
# barplot for ligand affinity:
# <10 Ang of ligand
# mmCSM-lig: will be the same no. of sites but the effect will be different
#------------------------------
mmLigP = stability_count_bp(plotdf = df3_lig
, df_colname = "mmcsm_lig_outcome"
#, leg_title = "mmCSM-lig"
#, label_categories = labels_mmlig
#, bp_plot_title = paste(common_bp_title, "ligand")
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "mmCSM\nLig"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = sts
, lts = lts
, ats = ats
, als = als
, ltis = ltis
, geom_ls = geom_ls
)
mmLigP
#------------------------------
# barplot for ppi2 affinity
# <10 Ang of interface
#------------------------------
if (tolower(gene)%in%geneL_ppi2){
ppi2P = stability_count_bp(plotdf = df3_ppi2
, df_colname = "mcsm_ppi2_outcome"
#, leg_title = "mCSM-ppi2"
#, label_categories = labels_ppi2
#, bp_plot_title = paste(common_bp_title, "PP-interface")
, yaxis_title = "Number of nsSNPs"
, leg_position = "none"
, subtitle_text = "mCSM\nPPI2"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = sts
, lts = lts
, ats = ats
, als = als
, ltis = ltis
, geom_ls = geom_ls
)
ppi2P
}
#----------------------------
# barplot for ppi2 affinity
# <10 Ang of interface
#------------------------------
if (tolower(gene)%in%geneL_na){
nca_distP = stability_count_bp(plotdf = df3_na
, df_colname = "mcsm_na_outcome"
#, leg_title = "mCSM-NA"
#, label_categories =
#, bp_plot_title = paste(common_bp_title, "Dist to NA")
, yaxis_title = "Number of nsSNPs"
, leg_position = "none"
, subtitle_text = "mCSM\nNA"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = sts
, lts = lts
, ats = ats
, als = als
, ltis = ltis
, geom_ls = geom_ls
)
nca_distP
}
#####################################################################
# ------------------------------
# bp site site count: mCSM-lig
# < 10 Ang ligand
# ------------------------------
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
posC_lig = site_snp_count_bp(plotdf = df3_lig
, df_colname = "position"
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"
, subtitle_colour = "chocolate4"
, subtitle_text = ""
, subtitle_size = subtitle_size
, geom_ls = geom_ls_pc
, leg_text_size = leg_text_size
, axis_text_size = axis_text_size
, axis_label_size = axis_label_size)
posC_lig
#------------------------------
# bp site site count: ppi2
# < 10 Ang interface
#------------------------------
if (tolower(gene)%in%geneL_ppi2){
posC_ppi2 = site_snp_count_bp(plotdf = df3_ppi2
, df_colname = "position"
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"
, subtitle_colour = "chocolate4"
, subtitle_text = ""
, subtitle_size = subtitle_size
, geom_ls = geom_ls_pc
, leg_text_size = leg_text_size
, axis_text_size = axis_text_size
, axis_label_size = axis_label_size)
posC_ppi2
}
#------------------------------
# bp site site count: NCA dist
# < 10 Ang nca
#------------------------------
if (tolower(gene)%in%geneL_na){
posC_nca = site_snp_count_bp(plotdf = df3_na
, df_colname = "position"
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"
, subtitle_colour = "chocolate4"
, subtitle_text = ""
, subtitle_size = subtitle_size
, geom_ls = geom_ls_pc
, leg_text_size = leg_text_size
, axis_text_size = axis_text_size
, axis_label_size = axis_label_size)
posC_nca
}
#===============================================================
#------------------------------
# bp site site count: ALL
# <10 Ang ligand
#------------------------------
posC_all = site_snp_count_bp(plotdf = df3
, df_colname = "position"
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"
, subtitle_colour = "chocolate4"
, subtitle_text = "All mutations sites"
, subtitle_size = subtitle_size
, geom_ls = geom_ls_pc
, leg_text_size = leg_text_size
, axis_text_size = axis_text_size
, axis_label_size = axis_label_size)
posC_all
##################################################################
consurfP = stability_count_bp(plotdf = df3
, df_colname = "consurf_outcome"
#, leg_title = "ConSurf"
#, label_categories = labels_consurf
, yaxis_title = "Number of nsSNPs"
, leg_position = "top"
, subtitle_text = "ConSurf"
, bar_fill_values = consurf_colours # from globals
, subtitle_colour= "black"
, sts = sts
, lts = lts
, ats = ats
, als = als
, ltis = ltis
, geom_ls = geom_ls)
consurfP
##############################################################
sts_so = 10
lts_so = 10
ats_so = 10
als_so = 10
ltis_so = 10
geom_ls_so = 2.5
#===================
# Stability
#===================
# duetP
duetP = stability_count_bp(plotdf = df3
, df_colname = "duet_outcome"
, leg_title = "mCSM-DUET"
#, label_categories = labels_duet
, yaxis_title = "Number of nsSNPs"
, leg_position = "none"
, subtitle_text = "mCSM-DUET"
, bar_fill_values = c("#F8766D", "#00BFC4")
, subtitle_colour= "black"
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
duetP
# foldx
foldxP = stability_count_bp(plotdf = df3
, df_colname = "foldx_outcome"
#, leg_title = "FoldX"
#, label_categories = labels_foldx
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "FoldX"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
foldxP
# deepddg
deepddgP = stability_count_bp(plotdf = df3
, df_colname = "deepddg_outcome"
#, leg_title = "DeepDDG"
#, label_categories = labels_deepddg
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "DeepDDG"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
deepddgP
# deepddg
dynamut2P = stability_count_bp(plotdf = df3
, df_colname = "ddg_dynamut2_outcome"
#, leg_title = "Dynamut2"
#, label_categories = labels_ddg_dynamut2_outcome
, yaxis_title = ""
, leg_position = "none"
, subtitle_text = "Dynamut2"
, bar_fill_values = c("#F8766D", "#00BFC4")
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
dynamut2P
# provean
proveanP = stability_count_bp(plotdf = df3
, df_colname = "provean_outcome"
#, leg_title = "PROVEAN"
#, label_categories = labels_provean
, yaxis_title = "Number of nsSNPs"
, leg_position = "none" # top
, subtitle_text = "PROVEAN"
, bar_fill_values = c("#D01C8B", "#F1B6DA") # light pink and deep
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
proveanP
# snap2
snap2P = stability_count_bp(plotdf = df3
, df_colname = "snap2_outcome"
#, leg_title = "SNAP2"
#, label_categories = labels_snap2
, yaxis_title = ""
, leg_position = "none" # top
, subtitle_text = "SNAP2"
, bar_fill_values = c("#D01C8B", "#F1B6DA") # light pink and deep
, sts = sts_so
, lts = lts_so
, ats = ats_so
, als = als_so
, ltis = ltis_so
, geom_ls = geom_ls_so)
snap2P
#####################################################################################

View file

@ -0,0 +1,261 @@
#=============
# Data: Input
#==============
#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/pnca/basic_barplots_pnca.R")
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/pnca/pe_sens_site_count_pnca.R")
if ( tolower(gene)%in%c("pnca") ){
cat("\nPlots available for layout are:")
duetP
foldxP
deepddgP
dynamut2P
proveanP
snap2P
mLigP
mmLigP
posC_lig
#ppi2P
#posC_ppi2
peP2
sens_siteP
peP # not used
sensP # not used
}
#========================
# Common title settings
#=========================
theme_georgia <- function(...) {
theme_gray(base_family = "sans", ...) +
theme(plot.title = element_text(face = "bold"))
}
title_theme <- calc_element("plot.title", theme_georgia())
###############################################################
common_bp_title = paste0("Sites <", DistCutOff, angstroms_symbol)
# extract common legends
# lig affinity
common_legend_outcome = get_legend(mLigP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# stability
common_legend_outcome = get_legend(duetP +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
# conservation
cons_common_legend_outcome = get_legend(snap2P +
guides(color = guide_legend(nrow = 1)) +
theme(legend.position = "top"))
###################################################################
#==================================
# Stability+Conservation: COMBINE
#==================================
tt_size = 10
#----------------------------
# stability and consv title
#----------------------------
tt_stab = ggdraw() +
draw_label(
paste0("Stability outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = tt_size
)
tt_cons = ggdraw() +
draw_label(
paste0("Conservation outcome"),
fontfamily = title_theme$family,
fontface = title_theme$face,
size = tt_size
)
#----------------------
# Output plot
#-----------------------
stab_cons_CLP = paste0(outdir_images
,tolower(gene)
,"_stab_cons_BP_CLP.png")
print(paste0("plot filename:", stab_cons_CLP))
png(stab_cons_CLP, units = "in", width = 10, height = 5, res = 300 )
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_stab,
common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
duetP,
foldxP,
deepddgP,
dynamut2P,
nrow = 1,
labels = c("A", "B", "C", "D"),
label_size = 12),
nrow = 2,
rel_heights=c(1,10)
),
NULL,
cowplot::plot_grid(
cowplot::plot_grid(
cowplot::plot_grid(
tt_cons,
cons_common_legend_outcome,
nrow = 2
),
cowplot::plot_grid(
proveanP,
snap2P,
nrow=1,
labels = c("E", "F"),
align = "hv"),
nrow = 2,
rel_heights = c(1, 10),
label_size = 12),
nrow=1
),
rel_widths = c(2,0.15,1),
nrow=1
)
dev.off()
#################################################################
#=======================================
# Affinity barplots: COMBINE ALL four
#========================================
ligT = paste0(common_bp_title, " ligand")
lig_affT = ggdraw() +
draw_label(
ligT,
fontfamily = title_theme$family,
fontface = title_theme$face,
#size = title_theme$size
size = 8
)
p1 = cowplot::plot_grid(cowplot::plot_grid(lig_affT
, common_legend_outcome
, nrow=2),
cowplot::plot_grid(mLigP, mmLigP, posC_lig
, nrow = 1
, rel_widths = c(1,0.65,1.8)
, align = "h"),
nrow = 2,
rel_heights = c(1,8)
)
p1
#### Combine p1 ####
w = 11.79
h = 3.5
mut_impact_CLP = paste0(outdir_images
,tolower(gene)
,"_mut_impactCLP.png")
#svg(affP, width = 20, height = 5.5)
print(paste0("plot filename:", mut_impact_CLP))
png(mut_impact_CLP, units = "in", width = w, height = h, res = 300 )
cowplot::plot_grid(p1,
nrow = 1,
labels = "AUTO",
label_size = 12,
rel_widths = c(2.5,2,2)
#, rel_heights = c(1)
)
dev.off()
w = 11.79
h = 3.5
mut_impact_CLP = paste0(outdir_images
,tolower(gene)
,"_mut_impactCLP.png")
#svg(affP, width = 20, height = 5.5)
print(paste0("plot filename:", mut_impact_CLP))
png(mut_impact_CLP, units = "in", width = w, height = h, res = 300 )
cowplot::plot_grid(p1,
nrow = 1,
labels = "AUTO",
label_size = 12,
rel_widths = c(2.5,2,2)
#, rel_heights = c(1)
)
dev.off()
##################################################
sensP
consurfP
#=================
#### Combine sensitivity + ConSurf ####
# or ConSurf
#=================
w = 3
h = 3
# sens_conP = paste0(outdir_images
# ,tolower(gene)
# ,"_sens_cons_CLP.png")
#
# print(paste0("plot filename:", sens_conP))
# png(sens_conP, units = "in", width = w, height = h, res = 300 )
#
# cowplot::plot_grid(sensP, consurfP,
# nrow = 2,
# rel_heights = c(1, 1.5)
# )
#
# dev.off()
conCLP = paste0(outdir_images
,tolower(gene)
,"_consurf_BP.png")
print(paste0("plot filename:", conCLP))
png(conCLP, units = "in", width = w, height = h, res = 300 )
consurfP
dev.off()
#================================
# Sensitivity mutation numbers: geom_tile
#================================
sensCLP = paste0(outdir_images
,tolower(gene)
,"_sensN_tile.png")
print(paste0("plot filename:", sensCLP))
png(sensCLP, units = "in", width = 1, height = 1, res = 300 )
sensP
dev.off()
#================================
# Sensitivity SITE numbers: geom_tile
#================================
sens_siteCLP = paste0(outdir_images
,tolower(gene)
,"_sens_siteC_tile.png")
print(paste0("plot filename:", sens_siteCLP))
png(sens_siteCLP, units = "in", width = 1.2, height = 1, res = 300 )
sens_siteP
dev.off()
###########################################################

View file

@ -0,0 +1,165 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: Lineage plots [merged_df2]
# Count
# Diversity
# Average stability dist
# Avergae affinity dist: optional
#########################################################
#=======
# output
#=======
# outdir_images = paste0("~/git/Writing/thesis/images/results/"
# , tolower(gene), "/")
# cat("plots will output to:", outdir_images)
#########################################################
#===============
#Quick numbers checks
#===============
nsample_lin = merged_df2[merged_df2$lineage%in%c("L1", "L2", "L3", "L4"),]
if ( all(table(nsample_lin$sensitivity)== table(nsample_lin$mutation_info_labels)) ){
cat("\nTotal no. of samples belonging to L1-l4 for", gene,":", nrow(nsample_lin)
, "\nCounting R and S samples")
if( sum(table(nsample_lin$sensitivity)) == nrow(nsample_lin) ){
cat("\nPASSNumbers cross checked:")
print(table(nsample_lin$sensitivity))
}
}else{
stop("Abort: Numbers mismatch. Please check")
}
########################################################################
###################################################
# Lineage barplots #
###################################################
my_xats = 8 # x axis text size # were 25
my_yats = 8# y axis text sized_lab_size
my_xals = 8 # x axis label size
my_yals = 8 # y axis label size
my_lls = 8 # legend label size
d_lab_size = 2.3
#===============================
# lineage sample and SNP count
#===============================
lin_countP = lin_count_bp(lf_data = lineage_dfL[['lin_lf']]
, all_lineages = F
, x_categ = "sel_lineages"
, y_count = "p_count"
, use_lineages = c("L1", "L2", "L3", "L4")
, bar_fill_categ = "count_categ"
, display_label_col = "p_count"
, bar_stat_stype = "identity"
, d_lab_size = d_lab_size
, d_lab_col = "black"
, my_xats = my_xats # x axis text size
, my_yats = my_yats # y axis text sized_lab_size
, my_xals = my_xals # x axis label size
, my_yals = my_yals # y axis label size
, my_lls = my_lls # legend label size
, bar_col_labels = c("nsSNPs", "Total Samples")
, bar_col_values = c("grey50", "gray75")
, bar_leg_name = ""
, leg_location = "top"
, y_log10 = F
, y_scale_percent = FALSE
, y_label = c("Count")
)
lin_countP
#===============================
# lineage SNP diversity count
#===============================
lin_diversityP = lin_count_bp_diversity(lf_data = lineage_dfL[['lin_wf']]
, x_categ = "sel_lineages"
, y_count = "snp_diversity"
#, all_lineages = F
, use_lineages = c("L1", "L2", "L3", "L4")
, display_label_col = "snp_diversity_f"
, bar_stat_stype = "identity"
, x_lab_angle = 90
, d_lab_size = d_lab_size
, my_xats = my_xats # x axis text size
, my_yats = my_yats # y axis text sized_lab_size
, my_xals = my_xals # x axis label size
, my_yals = my_yals # y axis label size
, my_lls = my_lls # legend label size
, y_log10 = F
, y_scale_percent = F
, leg_location = "top"
, y_label = "Percent" #"SNP diversity"
, bp_plot_title = "nsSNP diversity"
, title_colour = "black" #"chocolate4"
, subtitle_text = NULL
, sts = 10
, subtitle_colour = "#350E20FF")
lin_diversityP
###################################################
# Stability dist #
###################################################
# scaled_cols_stability = c("duet_scaled"
# , "deepddg_scaled"
# , "ddg_dynamut2_scaled"
# , "foldx_scaled"
# , "avg_stability_scaled")
my_ats = 8 # x axis text size # were 25
my_als = 8# y axis text sized_lab_size
my_leg_ts = 8 # x axis label size
my_leg_title = 8 # y axis label size
my_strip_ts = 8 #
my_xlabel = paste0("Average stability ", "(", stability_suffix, ")"); my_xlabel
#plotdf = merged_df2[merged_df2$lineage%in%c("L1", "L2", "L3", "L4"),]
linP_dm_om = lineage_distP(merged_df2
, with_facet = F
, x_axis = "avg_stability_scaled"
, y_axis = "lineage_labels"
, x_lab = my_xlabel
, use_lineages = c("L1", "L2", "L3", "L4")
#, fill_categ = "mutation_info_orig", fill_categ_cols = c("#E69F00", "#999999")
, fill_categ = "sensitivity"
, fill_categ_cols = c("red", "blue")
, label_categories = c("Resistant", "Sensitive")
, leg_label = "Mutation group"
, my_ats = my_ats # axis text size
, my_als = my_als # axis label size
, my_leg_ts = my_leg_ts
, my_leg_title = my_leg_title
, my_strip_ts = my_strip_ts
, alpha = 0.56
)
linP_dm_om
###################################################
# Affinity dist [OPTIONAL] #
###################################################
# scaled_cols_affinity = c("affinity_scaled"
# , "mmcsm_lig_scaled"
# , "mcsm_ppi2_scaled"
# , "mcsm_na_scaled"
# , "avg_lig_affinity_scaled")
# lineage_distP(merged_df2
# , with_facet = F
# , x_axis = "avg_lig_affinity_scaled"
# , y_axis = "lineage_labels"
# , x_lab = my_xlabel
# , use_lineages = c("L1", "L2", "L3", "L4")
# #, fill_categ = "mutation_info_orig", fill_categ_cols = c("#E69F00", "#999999")
# , fill_categ = "sensitivity"
# , fill_categ_cols = c("red", "blue")
# , label_categories = c("Resistant", "Sensitive")
# , leg_label = "Mutation group"
# , my_ats = 22 # axis text size
# , my_als = 22 # axis label size
# , my_leg_ts = 22
# , my_leg_title = 22
# , my_strip_ts = 22
# , alpha = 0.56
# )

View file

@ -0,0 +1,62 @@
#!/usr/bin/env Rscript
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/pnca/lineage_bp_dist.R")
#=======
# output
#=======
#outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
#cat("plots will output to:", outdir_images)
###########################################
# TASK: generate plots for lineage
# Individual plots in
#lineage_bp_both.R
#linage_dist_ens_stability.R
###########################################
# svg
# linPlots_combined = paste0(outdir_images
# , tolower(gene)
# ,"_linP_combined.svg")
#
# cat("\nOutput plot:", linPlots_combined)
# svg(linPlots_combined, width = 18, height = 12)
#
# cowplot::plot_grid(
# cowplot::plot_grid(lin_countP, lin_diversityP
# , nrow = 2
# , rel_heights = c(1.2,1)
# , labels = "AUTO"
# , label_size = my_label_size),
# NULL,
# linP_dm_om,
# nrow = 1,
# labels = c("", "", "C"),
# label_size = my_label_size,
# rel_widths = c(35, 3, 52)
# )
# dev.off()
# png
my_label_size = 12
linPlots_combined = paste0(outdir_images
, tolower(gene)
,"_linP_combined.png")
cat("\nOutput plot:", linPlots_combined)
png(linPlots_combined, width = 9, height = 6, units = "in" ,res = 300)
cowplot::plot_grid(
cowplot::plot_grid(lin_countP, lin_diversityP,
nrow = 2,
rel_heights = c(1.2,1),
labels = "AUTO",
label_size = my_label_size),
NULL,
linP_dm_om,
nrow = 1,
labels = c("", "", "C"),
label_size = my_label_size,
rel_widths = c(35, 3, 52)
)
dev.off()

View file

@ -0,0 +1,173 @@
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/pnca/prominent_effects_pnca.R")
source("/home/tanu/git/LSHTM_analysis/scripts/plotting/plotting_thesis/pnca/sensitivity_count_pnca.R")
##############################################################
# PE count
#pe_colour_map = c("DD_lig" = "#f0e68c" # khaki
# , "SS_lig" = "#ffd700" # gold
# , "DD_nucleic_acid"= "#d2b48c" # sandybrown
# , "SS_nucleic_acid"= "#a0522d" # sienna
# , "DD_ppi2" = "#da70d6" # orchid
# , "SS_ppi2" = "#ff1493" # deeppink
# , "DD_stability" = "#f8766d" # red
# , "SS_stability" = "#00BFC4") # blue
table(str_df_plot_cols$pe_effect_outcome)
##############################################################
#===========
#PE count:
# lig, ppi2, stability
#===========
rects <- data.frame(x=1:6,
colors = c("#f0e68c" ,
"#ffd700" ,
"#da70d6" ,
"#ff1493" ,
"#f8766d" ,
"#00BFC4")
)
rects$text = c("-ve Lig"
, "+ve Lig"
, "-ve PPI2"
, "+ve PPI2"
, "-ve stability"
, "+ve stability"
)
cell1 = table(str_df_plot_cols$pe_effect_outcome)[["DD_lig"]]
cell2 = 0
#cell3 = table(str_df_plot_cols$pe_effect_outcome)[["DD_nucleic_acid"]]
#cell4 = table(str_df_plot_cols$pe_effect_outcome)[["SS_nucleic_acid"]]
cell5 = table(str_df_plot_cols$pe_effect_outcome)[["DD_ppi2"]]
cell6 = table(str_df_plot_cols$pe_effect_outcome)[["SS_ppi2"]]
cell7 = table(str_df_plot_cols$pe_effect_outcome)[["DD_stability"]]
cell8 = table(str_df_plot_cols$pe_effect_outcome)[["SS_stability"]]
#rects$numbers = c(38, 0, 22, 9, 108, 681) #for embb
rects$numbers = c(cell1, cell2,
#cell3, cell4,
cell5, cell6,
cell7, cell8)
rects$num_labels = paste0("n=", rects$numbers)
rects
#------
# Plot
#------
#https://stackoverflow.com/questions/47986055/create-a-rectangle-filled-with-text
peP = ggplot(rects, aes(x, y = 0, fill = colors, label = paste0(text,"\n", num_labels))) +
geom_tile(width = 1, height = 1) + # make square tiles
geom_text(color = "black", size = 1.7) + # add white text in the middle
scale_fill_identity(guide = "none") + # color the tiles with the colors in the data frame
coord_fixed() + # make sure tiles are square
coord_flip()+ scale_x_reverse() +
# theme_void() # remove any axis markings
theme_nothing() # remove any axis markings
peP
#------
# Plot: this one is better
#------
peP2 = ggplot(rects, aes(x, y = 0, fill = colors, label = paste0(text,"\n", num_labels))) +
geom_tile() + # make square tiles
geom_text(color = "black", size = 1.6) + # add white text in the middle
scale_fill_identity(guide = "none") + # color the tiles with the colors in the data frame
coord_fixed() + # make sure tiles are square
theme_nothing() # remove any axis markings
peP2
########################################################
# From: script sensitivity_count per gene
#===============================
# Sensitivity count: SITE
#===============================
#--------
# embb
#--------
#rsc = 54
#ccc = 46
#ssc = 470
rsc = site_Rc; rsc
ccc = site_Cc; ccc
ssc = site_Sc; ssc
rect_rs_siteC <- data.frame(x=1:3,
colors = c("red",
"purple",
"blue")
)
rect_rs_siteC
rect_rs_siteC$text = c("Resistant",
"Common",
"Sensitive")
rect_rs_siteC$numbers = c(rsc,ccc,ssc)
rect_rs_siteC$num_labels = paste0("n=", rect_rs_siteC$numbers)
rect_rs_siteC
#------
# Plot
#------
sens_siteP = ggplot(rect_rs_siteC, aes(x, y = 0,
fill = colors,
label = num_labels
#,label = paste0(text,"\n", num_labels)
)) +
geom_tile(width = 1, height = 1) +
#geom_text(color = "black", size = 1.7) +
geom_label(color = "black", size = 1.7,fill = "white", alpha=0.7) +
scale_fill_identity(guide = "none") +
coord_fixed()+
theme_nothing() # remove any axis markings
sens_siteP
################################################################
#===============================
# Sensitivity count: Mutations
#===============================
table(sensP_df$sensitivity)
muts_Rc = table(sensP_df$sensitivity)[["R"]]
muts_Sc = table(sensP_df$sensitivity)[["S"]]
rect_sens <- data.frame(x=1:2,
colors = c("red",
"blue")
)
rect_sens$text = c("Resistant",
"Sensitive")
rect_sens$numbers = c(muts_Rc,muts_Sc)
rect_sens$num_labels = paste0("n=", rect_sens$numbers)
rect_sens
#------
# Plot
#------
sensP = ggplot(rect_sens, aes(x, y = 0,
fill = colors,
label = paste0(text,"\n", num_labels))) +
geom_tile(width = 1, height = 1) +
#geom_text(color = "black", size = 1.7) +
geom_label(color = "black", size = 1.7,fill = "white", alpha=0.7) +
scale_fill_identity(guide = "none") +
coord_fixed()+
theme_nothing() # remove any axis markings
sensP
sensP2 = sensP +
coord_flip() + scale_x_reverse()
sensP2

View file

@ -0,0 +1,16 @@
#!/usr/bin/env Rscript
#=============
# Data: Input
#==============
source("~/git/LSHTM_analysis/config/pnca.R")
source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R")
####################################################
class(merged_df3)
df3 = subset(merged_df3, select = -c(pos_count))
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
cat("plots will output to:", outdir_images)

View file

@ -0,0 +1,285 @@
########################################################
pos_colname = "position"
#-------------
# from ~/git/LSHTM_analysis/scripts/plotting/plotting_colnames.R
#-------------
length(all_stability_cols); length(raw_stability_cols)
length(scaled_stability_cols); length(outcome_stability_cols)
length(affinity_dist_colnames)
static_cols = c("mutationinformation",
#"position",
pos_colname,
"sensitivity")
other_cols_all = c(scaled_stability_cols, scaled_affinity_cols, affinity_dist_colnames)
#omit avg cols and foldx_scaled_signC cols
other_cols = other_cols_all[grep("avg", other_cols_all, invert = T)]
other_cols = other_cols[grep("foldx_scaled_signC",other_cols, invert = T )]
other_cols
cols_to_extract = c(static_cols, other_cols)
cat("\nExtracting cols:", cols_to_extract)
expected_ncols = length(static_cols) + length(other_cols)
expected_ncols
str_df = merged_df3[, cols_to_extract]
if (ncol(str_df) == expected_ncols){
cat("\nPASS: successfully extracted cols for calculating prominent effects")
}else{
stop("\nAbort: Could not extract cols for calculating prominent effects")
}
#=========================
# Masking affinity columns
#=========================
# First make values for affinity cols 0 when their corresponding dist >10
head(str_df)
# replace in place affinity values >10
str_df[str_df["ligand_distance"]>10,"affinity_scaled"]=0
str_df[str_df["ligand_distance"]>10,"mmcsm_lig_scaled"]=0
#ppi2 gene: replace in place ppi2 affinity values where ppi2 dist >10
if (tolower(gene)%in%geneL_ppi2){
str_df[str_df["interface_dist"]>10,"mcsm_ppi2_scaled"]=0
}
# na gene: replace in place na affinity values where na dist >10
if (tolower(gene)%in%geneL_na){
str_df[str_df["nca_distance"]>10,"mcsm_na_scaled"]=0
}
colnames(str_df)
head(str_df)
scaled_cols_tc = other_cols[grep("scaled", other_cols)]
################################################
#===============
# whole df
#===============
give_col=function(x,y,df=str_df){
df[df[[pos_colname]]==x,y]
}
for (i in unique(str_df[[pos_colname]]) ){
print(i)
#cat(length(unique(str_df[[pos_colname]])))
biggest = max(abs(give_col(i,scaled_cols_tc)))
str_df[str_df[[pos_colname]]==i,'abs_max_effect'] = biggest
str_df[str_df[[pos_colname]]==i,'effect_type']= names(
give_col(i,scaled_cols_tc)[which(
abs(
give_col(i,scaled_cols_tc)
) == biggest, arr.ind=T
)[, "col"]])[1]
effect_name = unique(str_df[str_df[[pos_colname]]==i,'effect_type'])#[1] # pick first one in case we have multiple exact values
# get index/rowname for value of max effect, and then use it to get the original sign
# here
#ind = rownames(which(abs(str_df[str_df[[pos_colname]]==i,c('position',effect_name)][effect_name])== biggest, arr.ind=T))
ind = rownames(which(abs(str_df[str_df[[pos_colname]]==i,c(pos_colname,effect_name)][effect_name])== biggest, arr.ind=T))
str_df[str_df[[pos_colname]]==i,'effect_sign'] = sign(str_df[effect_name][ind,])[1]
}
# ends with suffix 2 if dups
str_df$effect_type = sub("\\.[0-9]+", "", str_df$effect_type) # cull duplicate effect types that happen when there are exact duplicate values
colnames(str_df)
table(str_df$effect_type)
# check
str_df_check = str_df[str_df[[pos_colname]]%in%c(24, 32, 160, 303, 334),]
#================
# for Plots
#================
str_df_short = str_df[, c("mutationinformation",
#"position",
pos_colname,
"sensitivity"
, "effect_type"
, "effect_sign")]
table(str_df_short$effect_type)
table(str_df_short$effect_sign)
str(str_df_short)
# assign pe outcome
str_df_short$pe_outcome = ifelse(str_df_short$effect_sign<0, "DD", "SS")
table(str_df_short$pe_outcome )
table(str_df_short$effect_sign)
#==============
# group effect type:
# lig, ppi2, nuc. acid, stability
#==============
affcols = c("affinity_scaled", "mmcsm_lig_scaled")
#lig
table(str_df_short$effect_type)
str_df_short$effect_grouped = ifelse(str_df_short$effect_type%in%affcols
, "lig"
, str_df_short$effect_type)
table(str_df_short$effect_grouped)
#stability
str_df_short$effect_grouped = ifelse(!str_df_short$effect_grouped%in%c("lig")
, "stability"
, str_df_short$effect_grouped)
table(str_df_short$effect_grouped)
# create a sign as well
str_df_short$pe_effect_outcome = paste0(str_df_short$pe_outcome, "_"
, str_df_short$effect_grouped)
table(str_df_short$pe_effect_outcome)
#####################################################################
# Chimera: for colouring
####################################################################
#-------------------------------------
# get df with unique position
#--------------------------------------
#data[!duplicated(data$x), ]
str_df_plot = str_df_short[!duplicated(str_df[[pos_colname]]),]
if (nrow(str_df_plot) == length(unique(str_df[[pos_colname]]))){
cat("\nPASS: successfully extracted df with unique positions")
}else{
stop("\nAbort: Could not extract df with unique positions")
}
#-------------------------------------
# generate colours for effect types
#--------------------------------------
str_df_plot_cols = str_df_plot[, c(pos_colname,
"sensitivity",
"pe_outcome",
"effect_grouped",
"pe_effect_outcome")]
head(str_df_plot_cols)
# colour intensity based on sign
#str_df_plot_cols$colour_hue = ifelse(str_df_plot_cols$effect_sign<0, "bright", "light")
str_df_plot_cols$colour_hue = ifelse(str_df_plot_cols$pe_outcome=="DD", "bright", "light")
table(str_df_plot_cols$colour_hue); table(str_df_plot$pe_outcome)
head(str_df_plot_cols)
# colour based on effect
table(str_df_plot_cols$pe_effect_outcome)
pe_colour_map = c("DD_lig" = "#f0e68c" # khaki
, "SS_lig" = "#ffd700" # gold
, "DD_nucleic_acid"= "#d2b48c" # sandybrown
, "SS_nucleic_acid"= "#a0522d" # sienna
, "DD_ppi2" = "#da70d6" # orchid
, "SS_ppi2" = "#ff1493" # deeppink
, "DD_stability" = "#f8766d" # red
, "SS_stability" = "#00BFC4") # blue
#unlist(d[c('a', 'a', 'c', 'b')], use.names=FALSE)
#map the colours
str_df_plot_cols$colour_map= unlist(map(str_df_plot_cols$pe_effect_outcome
,function(x){pe_colour_map[[x]]}
))
head(str_df_plot_cols$colour_map)
table(str_df_plot_cols$colour_map)
table(str_df_plot_cols$pe_effect_outcome)
# str_df_plot_cols$colours = paste0(str_df_plot_cols$colour_hue
# , "_"
# , str_df_plot_cols$colour_map)
# head(str_df_plot_cols$colours)
# table(str_df_plot_cols$colours)
#
#
# class(str_df_plot_cols$colour_map)
# str(str_df_plot_cols)
# sort by colour
head(str_df_plot_cols)
str_df_plot_cols = str_df_plot_cols[order(str_df_plot_cols$colour_map), ]
head(str_df_plot_cols)
#======================================
# write file with prominent effects
#======================================
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/")
write.csv(str_df_plot_cols, paste0(outdir_images, tolower(gene), "_prominent_effects.csv"))
################################
# printing for chimera
###############################
chain_suffix = ".A"
str_df_plot_cols$pos_chain = paste0(str_df_plot_cols[[pos_colname]], chain_suffix)
table(str_df_plot_cols$colour_map)
table(str_df_plot_cols$pe_effect_outcome)
#===================================================
#-------------------
# Ligand Affinity
#-------------------
# -ve Lig Aff
dd_lig = str_df_plot_cols[str_df_plot_cols$pe_effect_outcome=="DD_lig",]
if (nrow(dd_lig) == table(str_df_plot_cols$pe_effect_outcome)[['DD_lig']]){
dd_lig_pos = dd_lig[[pos_colname]]
}else{
stop("Abort: DD affinity colour numbers mismtatch")
}
toString(paste0(dd_lig_pos, chain_suffix))
# +ve Lig Aff
ss_lig = str_df_plot_cols[str_df_plot_cols$pe_effect_outcome=="SS_lig",]
if (!empty(ss_lig)){
if (nrow(ss_lig) == table(str_df_plot_cols$pe_effect_outcome)[['SS_lig']]){
ss_lig_pos = ss_lig[[pos_colname]]
}else{
stop("Abort: SS affinity colour numbers mismtatch")
}
#put in chimera cmd
toString(paste0(ss_lig_pos, chain_suffix))
}
#=========================================================
#------------------------
# Stability
#------------------------
# -ve Stability
dd_stability = str_df_plot_cols[str_df_plot_cols$pe_effect_outcome=="DD_stability",]
if (nrow(dd_stability) == table(str_df_plot_cols$pe_effect_outcome)[['DD_stability']]){
dd_stability_pos = dd_stability[[pos_colname]]
}else{
stop("Abort: DD Stability colour numbers mismtatch")
}
# +ve Stability
ss_stability = str_df_plot_cols[str_df_plot_cols$pe_effect_outcome=="SS_stability",]
if (nrow(ss_stability) == table(str_df_plot_cols$pe_effect_outcome)[['SS_stability']]){
ss_stability_pos = ss_stability[[pos_colname]]
}else{
stop("Abort: SS Stability colour numbers mismtatch")
}
#put in chimera cmd
toString(paste0(dd_stability_pos, chain_suffix))
toString(paste0(ss_stability_pos, chain_suffix))
####################################################################

View file

@ -0,0 +1,65 @@
#=========================
# Count Sensitivity
# Mutations and positions
#=========================
pos_colname_c ="position"
sensP_df = merged_df3[,c("mutationinformation",
#"position",
pos_colname_c,
"sensitivity")]
head(sensP_df)
table(sensP_df$sensitivity)
#---------------
# Total unique positions
#----------------
tot_mut_pos = length(unique(sensP_df[[pos_colname_c]]))
cat("\nNo of Tot muts sites:", tot_mut_pos)
# resistant mut pos
sens_site_allR = sensP_df[[pos_colname_c]][sensP_df$sensitivity=="R"]
sens_site_UR = unique(sens_site_allR)
length(sens_site_UR)
# Sensitive mut pos
sens_site_allS = sensP_df[[pos_colname_c]][sensP_df$sensitivity=="S"]
sens_site_US = unique(sens_site_allS)
length(sens_site_UR)
#---------------
# Common Sites
#----------------
common_pos = intersect(sens_site_UR,sens_site_US)
site_Cc = length(common_pos)
cat("\nNo of Common sites:", site_Cc
, "\nThese are:", common_pos)
#---------------
# Resistant muts
#----------------
site_R = sens_site_UR[!sens_site_UR%in%common_pos]
site_Rc = length(site_R)
if ( length(sens_site_allR) == table(sensP_df$sensitivity)[['R']] ){
cat("\nNo of R muts:", length(sens_site_allR)
, "\nNo. of R sites:",site_Rc
, "\nThese are:", site_R
)
}
#---------------
# Sensitive muts
#----------------
site_S = sens_site_US[!sens_site_US%in%common_pos]
site_Sc = length(site_S)
if ( length(sens_site_allS) == table(sensP_df$sensitivity)[['S']] ){
cat("\nNo of S muts:", length(sens_site_allS)
, "\nNo. of S sites:", site_Sc
, "\nThese are:", site_S)
}
#########################