moved logo_skf function to del as using the MultClfs for combined data
This commit is contained in:
parent
a6532ddfa3
commit
2c50124b1b
8 changed files with 71 additions and 1735 deletions
|
@ -92,10 +92,10 @@ scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
|||
, 'roc_auc' : make_scorer(roc_auc_score)
|
||||
, 'jcc' : make_scorer(jaccard_score)
|
||||
})
|
||||
|
||||
# for sel_cv INSIDE FUNCTION CALL NOW
|
||||
#skf_cv = StratifiedKFold(n_splits = 10
|
||||
# #, shuffle = False, random_state= None)
|
||||
# , shuffle = True,**rs)
|
||||
# , shuffle = True, **rs)
|
||||
|
||||
#rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
||||
# , n_repeats = 3
|
||||
|
@ -149,25 +149,26 @@ scoreBT_mapD = {'bts_mcc' : 'MCC'
|
|||
# Run Multiple Classifiers
|
||||
############################
|
||||
# Multiple Classification - Model Pipeline
|
||||
def MultModelsCl(input_df, target
|
||||
, sel_cv
|
||||
, tts_split_type
|
||||
, resampling_type
|
||||
#, group = None
|
||||
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
, var_type = ['numerical', 'categorical','mixed']
|
||||
, scale_numeric = ['min_max', 'std', 'min_max_neg', 'none']
|
||||
def MultModelsCl(input_df
|
||||
, target
|
||||
, sel_cv
|
||||
, tts_split_type
|
||||
, resampling_type
|
||||
#, group = None
|
||||
|
||||
, add_cm = True # adds confusion matrix based on cross_val_predict
|
||||
, add_yn = True # adds target var class numbers
|
||||
, var_type = ['numerical', 'categorical','mixed']
|
||||
, scale_numeric = ['min_max', 'std', 'min_max_neg', 'none']
|
||||
|
||||
, run_blind_test = True
|
||||
, blind_test_df = pd.DataFrame()
|
||||
, blind_test_target = pd.Series(dtype = int)
|
||||
, return_formatted_output = True
|
||||
, run_blind_test = True
|
||||
, blind_test_df = pd.DataFrame()
|
||||
, blind_test_target = pd.Series(dtype = int)
|
||||
, return_formatted_output = True
|
||||
|
||||
, random_state = 42
|
||||
, n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
|
||||
):
|
||||
, random_state = 42
|
||||
, n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
|
||||
):
|
||||
|
||||
'''
|
||||
@ param input_df: input features
|
||||
|
@ -357,10 +358,9 @@ def MultModelsCl(input_df, target
|
|||
y_pred = cross_val_predict(model_pipeline
|
||||
, input_df
|
||||
, target
|
||||
#, commented out thing,
|
||||
, cv=sel_cv
|
||||
, **njobs
|
||||
)
|
||||
, cv = sel_cv
|
||||
#, groups = group
|
||||
, **njobs)
|
||||
#_tn, _fp, _fn, _tp = confusion_matrix(y_pred, y).ravel() # internally
|
||||
tn, fp, fn, tp = confusion_matrix(y_pred, target).ravel()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue