added combined model FS code and run script
This commit is contained in:
parent
78704dec5a
commit
2b953583e2
7 changed files with 1046 additions and 0 deletions
52
scripts/ml/untitled5.py
Normal file
52
scripts/ml/untitled5.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Sep 2 11:11:49 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
# https://towardsdatascience.com/explain-feature-variation-employing-pca-in-scikit-learn-6711e0a5c0b7
|
||||
from sklearn.decomposition import PCA
|
||||
#import tensorflow as tf
|
||||
#from tensorflow import keras
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
from sklearn.metrics import matthews_corrcoef
|
||||
|
||||
# pca = PCA().fit(X)
|
||||
# plt.plot(np.cumsum(pca.explained_variance_ratio_))
|
||||
# plt.xlabel(‘number of components’)
|
||||
# plt.ylabel(‘cumulative explained variance’)
|
||||
|
||||
# from old scripts
|
||||
fooD = combined_DF_OS(combined_df)
|
||||
|
||||
numerical_ix = fooD['X'].select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
num_featuresL = list(numerical_ix)
|
||||
numerical_colind = fooD['X'].columns.get_indexer(list(numerical_ix) )
|
||||
numerical_colind
|
||||
|
||||
numF = fooD['X'][numerical_ix]
|
||||
|
||||
categorical_ix = fooD['X'].select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
categorical_colind = fooD['X'].columns.get_indexer(list(categorical_ix))
|
||||
categorical_colind
|
||||
|
||||
##############
|
||||
|
||||
X_train,X_test,y_train,y_test=train_test_split(numF,fooD['y'],test_size=0.2)
|
||||
|
||||
pca=PCA(n_components=50)
|
||||
X_train_new=pca.fit_transform(X_train)
|
||||
X_test_new=pca.transform(X_test)
|
||||
print(X_train.shape)
|
||||
print(X_train_new.shape)
|
||||
|
||||
pca.explained_variance_ratio_
|
||||
clf=KNeighborsClassifier(n_neighbors=5)
|
||||
clf.fit(X_train_new,y_train)
|
||||
y_pred_new=clf.predict(X_test_new)
|
||||
matthews_corrcoef(y_test,y_pred_new)
|
Loading…
Add table
Add a link
Reference in a new issue