added combined model FS code and run script
This commit is contained in:
parent
78704dec5a
commit
2b953583e2
7 changed files with 1046 additions and 0 deletions
280
scripts/ml/combined_model/cm_logo_skf_FS.py
Executable file
280
scripts/ml/combined_model/cm_logo_skf_FS.py
Executable file
|
@ -0,0 +1,280 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Jun 29 19:44:06 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
import sys, os
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from sklearn import linear_model
|
||||
from sklearn import datasets
|
||||
from collections import Counter
|
||||
|
||||
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
||||
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
||||
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
||||
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
||||
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
||||
|
||||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
from sklearn.svm import SVC
|
||||
from xgboost import XGBClassifier
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
||||
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.compose import make_column_transformer
|
||||
|
||||
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
||||
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
||||
|
||||
# added
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
||||
|
||||
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
||||
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
||||
|
||||
from sklearn.pipeline import Pipeline, make_pipeline
|
||||
|
||||
from sklearn.feature_selection import RFE, RFECV
|
||||
|
||||
import itertools
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from statistics import mean, stdev, median, mode
|
||||
|
||||
from imblearn.over_sampling import RandomOverSampler
|
||||
from imblearn.under_sampling import RandomUnderSampler
|
||||
from imblearn.over_sampling import SMOTE
|
||||
from sklearn.datasets import make_classification
|
||||
from imblearn.combine import SMOTEENN
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
from imblearn.over_sampling import SMOTENC
|
||||
from imblearn.under_sampling import EditedNearestNeighbours
|
||||
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
||||
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.base import BaseEstimator
|
||||
from sklearn.impute import KNNImputer as KNN
|
||||
import json
|
||||
import argparse
|
||||
import re
|
||||
import itertools
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
from boruta import BorutaPy
|
||||
|
||||
###############################################################################
|
||||
# homedir = os.path.expanduser("~")
|
||||
# sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
# sys.path
|
||||
###############################################################################
|
||||
#outdir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
|
||||
#====================
|
||||
# Import ML functions
|
||||
#====================
|
||||
#from ml_data_combined import *
|
||||
#from MultClfs import *
|
||||
#from GetMLData import *
|
||||
#from SplitTTS import *
|
||||
|
||||
#skf_cv = StratifiedKFold(n_splits = 10 , shuffle = True, random_state = 42)
|
||||
|
||||
#logo = LeaveOneGroupOut()
|
||||
|
||||
########################################################################
|
||||
# COMPLETE data: No tts_split
|
||||
########################################################################
|
||||
#%%
|
||||
def CMLogoSkf_FS(cm_input_df
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["embb", "katg", "rpob", "pnca", "gid"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, var_type = ['numerical', 'categorical','mixed']
|
||||
|
||||
):
|
||||
|
||||
n_jobs = os.cpu_count()
|
||||
njobs = {'n_jobs': n_jobs }
|
||||
rs = {'random_state': 42}
|
||||
|
||||
cm_gene_featuresD = {}
|
||||
for bts_gene in bts_genes:
|
||||
print('\n BTS gene:', bts_gene)
|
||||
if not std_gene_omit:
|
||||
training_genesL = ['alr']
|
||||
else:
|
||||
training_genesL = []
|
||||
|
||||
tr_gene_omit = std_gene_omit + [bts_gene]
|
||||
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
||||
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
||||
n_total_genes = len(all_genes)
|
||||
|
||||
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
|
||||
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
||||
|
||||
print('\nTotal genes: ', n_total_genes
|
||||
,'\nTraining on:', n_tr_genes
|
||||
,'\nTraining on genes:', training_genesL
|
||||
, '\nOmitted genes:', tr_gene_omit
|
||||
, '\nBlind test gene:', bts_gene)
|
||||
|
||||
print('\nDim of data:', cm_input_df.shape)
|
||||
|
||||
tts_split_type = "logo_skf_BT_" + bts_gene
|
||||
|
||||
#-------
|
||||
# training
|
||||
#------
|
||||
cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)]
|
||||
|
||||
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
|
||||
#cm_y = cm_training_df.loc[:,'dst_mode']
|
||||
cm_y = cm_training_df.loc[:, target_var]
|
||||
|
||||
gene_group = cm_training_df.loc[:,'gene_name']
|
||||
|
||||
print('\nTraining data dim:', cm_X.shape
|
||||
, '\nTraining Target dim:', cm_y.shape)
|
||||
|
||||
if all(cm_X.columns.isin(cols_to_drop) == False):
|
||||
print('\nChecked training df does NOT have Target var')
|
||||
else:
|
||||
sys.exit('\nFAIL: training data contains Target var')
|
||||
|
||||
#---------------
|
||||
# BTS: genes
|
||||
#---------------
|
||||
cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])]
|
||||
|
||||
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
|
||||
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
||||
cm_bts_y = cm_test_df.loc[:, target_var]
|
||||
|
||||
print('\nTEST data dim:' , cm_bts_X.shape
|
||||
, '\nTEST Target dim:' , cm_bts_y.shape)
|
||||
|
||||
print("Running Multiple models on LOGO with SKF")
|
||||
|
||||
|
||||
# REASSIGN for simplicity
|
||||
# X
|
||||
X_train = cm_X.copy()
|
||||
X_test = cm_bts_X.copy()
|
||||
X_train.shape
|
||||
X_test.shape
|
||||
|
||||
# Y
|
||||
y_train = cm_y.copy()
|
||||
y_test = cm_bts_y.copy()
|
||||
y_train.shape
|
||||
y_test.shape
|
||||
|
||||
|
||||
##############################################################################
|
||||
#PREPROCESS
|
||||
|
||||
numerical_ix = X_train.select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
print("\nNo. of numerical indices:", len(numerical_ix))
|
||||
|
||||
categorical_ix = X_train.select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
print("\nNo. of categorical indices:", len(categorical_ix))
|
||||
|
||||
#======================================================
|
||||
# Determine preprocessing steps ~ var_type
|
||||
#======================================================
|
||||
|
||||
if var_type == 'numerical':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)]
|
||||
|
||||
if var_type == 'categorical':
|
||||
t = [('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
if var_type == 'mixed':
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
|
||||
col_transform.fit(X_train)
|
||||
col_transform.get_feature_names_out()
|
||||
|
||||
var_type_colnames = col_transform.get_feature_names_out()
|
||||
var_type_colnames = pd.Index(var_type_colnames)
|
||||
|
||||
if var_type == 'mixed':
|
||||
print('\nVariable type is:', var_type
|
||||
, '\nNo. of columns in input_df:', len(X_train.columns)
|
||||
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
|
||||
else:
|
||||
print('\nNo. of columns in input_df:', len(cm_input_df.columns))
|
||||
|
||||
|
||||
##############################################################################
|
||||
# FS: Random Forest + Boruta
|
||||
|
||||
X_train = col_transform.fit_transform(X_train)
|
||||
X_test = col_transform.fit_transform(X_test)
|
||||
|
||||
fs_clf = "RandomForestClassifier"
|
||||
rf_all_features = RandomForestClassifier(n_estimators=1000, max_depth=5
|
||||
, **rs, **njobs)
|
||||
|
||||
# fit
|
||||
rf_all_features.fit(np.array(X_train), np.array(y_train))
|
||||
print("RF, baseline MCC:", matthews_corrcoef(y_test, rf_all_features.predict(X_test)))
|
||||
|
||||
# BORUTA and fit
|
||||
boruta_selector = BorutaPy(rf_all_features,**rs, verbose = 3)
|
||||
boruta_selector.fit(np.array(X_train), np.array(y_train))
|
||||
|
||||
# Get chosen features
|
||||
print("Ranking: ", boruta_selector.ranking_)
|
||||
print("No. of significant features: ", boruta_selector.n_features_)
|
||||
|
||||
|
||||
X_important_train = boruta_selector.transform(np.array(X_train))
|
||||
X_important_test = boruta_selector.transform(np.array(X_test))
|
||||
|
||||
# just retesting with selected features on RF itselfs
|
||||
rf_all_features.fit(X_important_train, y_train)
|
||||
print("RF, Boruta MCC:", matthews_corrcoef(y_test, rf_all_features.predict(X_important_test)))
|
||||
|
||||
selected_rf_features = pd.DataFrame({'Feature':list(var_type_colnames),
|
||||
'Ranking':boruta_selector.ranking_})
|
||||
|
||||
sel_rf_features_sorted = selected_rf_features.sort_values(by='Ranking')
|
||||
|
||||
|
||||
sel_features = var_type_colnames[boruta_selector.support_]
|
||||
cm_gene_featuresD.update({bts_gene: {
|
||||
"sel_features": sel_features
|
||||
, "fs_ranking" : sel_rf_features_sorted
|
||||
, "fs_model_name": fs_clf
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
return(cm_gene_featuresD)
|
32
scripts/ml/combined_model/run_cm_logo.py
Normal file
32
scripts/ml/combined_model/run_cm_logo.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Sep 3 09:43:22 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
|
||||
###############################################################################
|
||||
homedir = os.path.expanduser("~")
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml/combined_model')
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml')
|
||||
|
||||
from MultClfs import *
|
||||
###############################################################################
|
||||
|
||||
#%% RUN: Combined model Baseline
|
||||
outdir_cg = "/home/tanu/git/LSHTM_ML/output/combined/"
|
||||
#===============
|
||||
# Complete Data
|
||||
#===============
|
||||
CombinedModelML(cm_input_df = combined_df, outdir = outdir_cg, file_suffix = "complete")
|
||||
CombinedModelML(cm_input_df = combined_df, outdir = outdir_cg, std_gene_omit=['alr'], file_suffix = "complete")
|
||||
|
||||
#===============
|
||||
# Actual Data
|
||||
#===============
|
||||
CombinedModelML(cm_input_df = combined_df_actual, outdir = outdir_cg, file_suffix = "actual")
|
||||
CombinedModelML(cm_input_df = combined_df_actual, outdir = outdir_cg, std_gene_omit=['alr'], file_suffix = "actual")
|
||||
|
||||
|
204
scripts/ml/combined_model/run_cm_logo_FS.py
Normal file
204
scripts/ml/combined_model/run_cm_logo_FS.py
Normal file
|
@ -0,0 +1,204 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Sep 2 19:17:46 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
###############################################################################
|
||||
homedir = os.path.expanduser("~")
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml/combined_model')
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions')
|
||||
sys.path.append(homedir + '/home/tanu/git/LSHTM_analysis/scripts/ml')
|
||||
|
||||
from MultClfs import *
|
||||
from cm_logo_skf_FS import *
|
||||
|
||||
###############################################################################
|
||||
#%% FS with all genes in training
|
||||
###############################################################################
|
||||
|
||||
# 1. Select Features
|
||||
boruta_features = CMLogoSkf_FS(cm_input_df = combined_df,var_type = 'mixed', file_suffix = "complete")
|
||||
|
||||
# 2. Find original column names of features
|
||||
# if it starts with num__, get rid of num__
|
||||
# if it starts with cat__, get rid of cat__ and the _<number> at the end
|
||||
for i in boruta_features:
|
||||
print(i)
|
||||
boruta_features[i]['sel_features']=[re.sub('^num__|cat__(.*)_\d*$',r'\1', current_thing) for current_thing in boruta_features[i]['sel_features']]
|
||||
boruta_features[i]['sel_features'] = list(set(boruta_features[i]['sel_features']))
|
||||
|
||||
# write json
|
||||
OutFile_6Tgenes = "/home/tanu/git/LSHTM_ML/output/feature_selection/boruta_features_6_Tgenes.json"
|
||||
pd.DataFrame(boruta_features).to_json(path_or_buf=OutFile_6Tgenes)
|
||||
|
||||
# 3. Run all classification models using original column names from (2)
|
||||
combined_df_embb=combined_df[boruta_features['embb']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_katg=combined_df[boruta_features['katg']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_pnca=combined_df[boruta_features['pnca']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_gid= combined_df[boruta_features['gid' ]['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_rpob= combined_df[boruta_features['rpob' ]['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
|
||||
|
||||
# from /home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClf.py
|
||||
CombinedModelML(combined_df_embb
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["embb"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS"
|
||||
)
|
||||
|
||||
|
||||
CombinedModelML(combined_df_katg
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["katg"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS"
|
||||
)
|
||||
|
||||
|
||||
CombinedModelML(combined_df_pnca
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["pnca"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS"
|
||||
)
|
||||
|
||||
CombinedModelML(combined_df_gid
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["gid"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS"
|
||||
)
|
||||
|
||||
CombinedModelML(combined_df_rpob
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["rpob"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = []
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS"
|
||||
)
|
||||
|
||||
|
||||
# write all feature rankings
|
||||
for i in boruta_features:
|
||||
print (i)
|
||||
gene_fs_ranking = boruta_features[i]['fs_ranking']
|
||||
gene_fs_ranking.to_csv("/home/tanu/git/LSHTM_ML/output/feature_selection/"+ i + "_boruta_featues_6Tgenes.csv")
|
||||
|
||||
|
||||
###############################################################################
|
||||
#%% FS withour training including ALR
|
||||
###############################################################################
|
||||
# With training omitting alr
|
||||
boruta_features_omit_alr = CMLogoSkf_FS(cm_input_df = combined_df
|
||||
, std_gene_omit = ['alr']
|
||||
, var_type = 'mixed')
|
||||
|
||||
# 2. Find original column names of features
|
||||
# if it starts with num__, get rid of num__
|
||||
# if it starts with cat__, get rid of cat__ and the _<number> at the end
|
||||
for i in boruta_features_omit_alr:
|
||||
print(i)
|
||||
boruta_features_omit_alr[i]['sel_features']=[re.sub('^num__|cat__(.*)_\d*$',r'\1', current_thing) for current_thing in boruta_features[i]['sel_features']]
|
||||
boruta_features_omit_alr[i]['sel_features'] = list(set(boruta_features_omit_alr[i]['sel_features']))
|
||||
|
||||
# write json
|
||||
OutFile_5Tgenes = "/home/tanu/git/LSHTM_ML/output/feature_selection/boruta_features_5_Tgenes.json"
|
||||
pd.DataFrame(boruta_features_omit_alr).to_json(path_or_buf=OutFile_5Tgenes)
|
||||
|
||||
# 3. Run all classification models using original column names from (2)
|
||||
cm_input_df5 = combined_df[~combined_df['gene_name'].isin(omit_gene_alr)]
|
||||
|
||||
combined_df_embb_no_alr = cm_input_df5[boruta_features_omit_alr['embb']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_katg_no_alr = cm_input_df5[boruta_features_omit_alr['katg']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_pnca_no_alr = cm_input_df5[boruta_features_omit_alr['pnca']['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_gid_no_alr = cm_input_df5[boruta_features_omit_alr['gid' ]['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
combined_df_rpob_no_alr = cm_input_df5[boruta_features_omit_alr['rpob' ]['sel_features']+['dst', 'dst_mode', 'gene_name']]
|
||||
|
||||
|
||||
CombinedModelML(combined_df_embb_no_alr
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["embb"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = ["alr"]
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS_no_Talr"
|
||||
)
|
||||
|
||||
|
||||
CombinedModelML(combined_df_katg_no_alr
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["katg"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = ["alr"]
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS_no_Talr"
|
||||
)
|
||||
|
||||
|
||||
CombinedModelML(combined_df_pnca_no_alr
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["pnca"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = ["alr"]
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS_no_Talr"
|
||||
)
|
||||
|
||||
CombinedModelML(combined_df_gid_no_alr
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["gid"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = ["alr"]
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS_no_Talr"
|
||||
)
|
||||
|
||||
CombinedModelML(combined_df_rpob_no_alr
|
||||
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
||||
, bts_genes = ["rpob"]
|
||||
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
||||
, target_var = 'dst_mode'
|
||||
, gene_group = 'gene_name'
|
||||
, std_gene_omit = ["alr"]
|
||||
, output_dir = "/home/tanu/git/LSHTM_ML/output/feature_selection/"
|
||||
, file_suffix = "FS_no_Talr"
|
||||
)
|
||||
|
||||
|
||||
# write all feature rankings
|
||||
for i in boruta_features_omit_alr:
|
||||
print (i)
|
||||
gene_fs_ranking_no_alr = boruta_features_omit_alr[i]['fs_ranking']
|
||||
gene_fs_ranking_no_alr.to_csv("/home/tanu/git/LSHTM_ML/output/feature_selection/"+ i + "_boruta_featues_5Tgenes.csv")
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue