added combined model FS code and run script
This commit is contained in:
parent
78704dec5a
commit
2b953583e2
7 changed files with 1046 additions and 0 deletions
121
scripts/ml/boruta_test_clfs.py
Normal file
121
scripts/ml/boruta_test_clfs.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Sep 2 16:10:44 2022
|
||||
|
||||
@author: tanu
|
||||
"""
|
||||
from sklearn.ensemble import VotingClassifier
|
||||
from sklearn.ensemble import BaggingClassifier
|
||||
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier, ExtraTreesClassifier
|
||||
from boruta import BorutaPy
|
||||
|
||||
fooD = combined_DF_OS(combined_df)
|
||||
|
||||
numerical_ix = fooD['X'].select_dtypes(include=['int64', 'float64']).columns
|
||||
numerical_ix
|
||||
print("\nNo. of numerical indices:", len(numerical_ix))
|
||||
|
||||
categorical_ix = fooD['X'].select_dtypes(include=['object', 'bool']).columns
|
||||
categorical_ix
|
||||
print("\nNo. of categorical indices:", len(categorical_ix))
|
||||
|
||||
|
||||
var_type = "mixed"
|
||||
|
||||
if var_type == 'mixed':
|
||||
|
||||
t = [('num', MinMaxScaler(), numerical_ix)
|
||||
, ('cat', OneHotEncoder(), categorical_ix)]
|
||||
|
||||
col_transform = ColumnTransformer(transformers = t
|
||||
, remainder='passthrough')
|
||||
#--------------ALEX help
|
||||
# col_transform
|
||||
# col_transform.fit(X)
|
||||
# test = col_transform.transform(X)
|
||||
# print(col_transform.get_feature_names_out())
|
||||
|
||||
# foo = col_transform.fit_transform(X)
|
||||
Xm_train = col_transform.fit_transform(fooD['X'])
|
||||
fooD['X'].shape
|
||||
Xm_train.shape
|
||||
|
||||
Xm_test = col_transform.fit_transform(fooD['X_bts'])
|
||||
fooD['X_bts'].shape
|
||||
Xm_test.shape
|
||||
|
||||
X_train = Xm_train.copy()
|
||||
X_test = Xm_test.copy()
|
||||
X_train.shape
|
||||
X_test.shape
|
||||
|
||||
y_train = fooD['y']
|
||||
y_test = fooD['y_bts']
|
||||
y_train.shape
|
||||
y_test.shape
|
||||
|
||||
# perhaps
|
||||
#col_transform.fit(fooD['X'])
|
||||
#encoded_colnames = pd.Index(col_transform.get_feature_names_out())
|
||||
#======================
|
||||
# 1 model
|
||||
n_jobs = os.cpu_count()
|
||||
njobs = {'n_jobs': n_jobs }
|
||||
rs = {'random_state': 42}
|
||||
|
||||
rf_all_features = RandomForestClassifier(n_estimators=1000, max_depth=5
|
||||
, **rs, **njobs)
|
||||
|
||||
#rf_all_features = VotingClassifier(estimators=1000)
|
||||
rf_all_features = BaggingClassifier(random_state=1, n_estimators=100, verbose = 3, **njobs)
|
||||
rf_all_features = AdaBoostClassifier(random_state=1, n_estimators=1000)
|
||||
rf_all_features = ExtraTreesClassifier(random_state=1, n_estimators=1000, max_depth=5, verbose = 3)
|
||||
rf_all_features = DecisionTreeClassifier(random_state=1, max_depth=5)
|
||||
|
||||
|
||||
rf_all_features.fit(X_train, np.array(y_train))
|
||||
accuracy_score(y_test, rf_all_features.predict(X_test))
|
||||
matthews_corrcoef(y_test, rf_all_features.predict(X_test))
|
||||
|
||||
# BORUTA
|
||||
boruta_selector = BorutaPy(rf_all_features,**rs, verbose = 3)
|
||||
boruta_selector.fit(np.array(X_train), np.array(y_train))
|
||||
|
||||
# Tells you how many features: GOOD
|
||||
print("Ranking: ", boruta_selector.ranking_)
|
||||
print("No. of significant features: ", boruta_selector.n_features_)
|
||||
|
||||
|
||||
cm_df = combined_df.drop(['gene_name', 'dst', 'dst_mode'], axis = 1)
|
||||
col_transform.fit(cm_df)
|
||||
col_transform.get_feature_names_out()
|
||||
|
||||
var_type_colnames = col_transform.get_feature_names_out()
|
||||
var_type_colnames = pd.Index(var_type_colnames)
|
||||
|
||||
if var_type == 'mixed':
|
||||
print('\nVariable type is:', var_type
|
||||
, '\nNo. of columns in input_df:', len(cm_df.columns)
|
||||
, '\nNo. of columns post one hot encoder:', len(var_type_colnames))
|
||||
else:
|
||||
print('\nNo. of columns in input_df:', len(input_df.columns))
|
||||
|
||||
|
||||
selected_rf_features = pd.DataFrame({'Feature':list(var_type_colnames),
|
||||
'Ranking':boruta_selector.ranking_})
|
||||
sel_rf_features_sorted = selected_rf_features.sort_values(by='Ranking')
|
||||
|
||||
|
||||
sel_features = var_type_colnames[boruta_selector.support_]
|
||||
|
||||
|
||||
# tells you the ranking: GOOD
|
||||
#foo2 = selected_rf_features.sort_values(by='Ranking')
|
||||
|
||||
X_important_train = boruta_selector.transform(np.array(X_train))
|
||||
X_important_test = boruta_selector.transform(np.array(X_test))
|
||||
|
||||
rf_all_features.fit(X_important_train, y_train)
|
||||
accuracy_score(y_test, rf_all_features.predict(X_important_test))
|
||||
matthews_corrcoef(y_test, rf_all_features.predict(X_important_test))
|
Loading…
Add table
Add a link
Reference in a new issue