moved functions/ in the scripts dir

This commit is contained in:
Tanushree Tunstall 2021-06-11 11:11:39 +01:00
parent 2dc81e72f4
commit 29fa99b914
6 changed files with 4 additions and 4 deletions

126
scripts/functions/plotting_data.R Executable file
View file

@ -0,0 +1,126 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: formatting data that will be used for various plots
#########################################################
# load libraries and functions
library(data.table)
library(dplyr)
#========================================================
# plotting_data(): formatting data for plots
# input args:
## input csv file
## lig cut off dist, default = 10 Ang
# output: list of 4 dfs, that need to be decompressed
## my_df
## my_df_u
## my_df_u_lig
## dup_muts
#========================================================
plotting_data <- function(infile_params, mcsm_lig_cutoff = 10) {
my_df = data.frame()
my_df_u = data.frame()
my_df_u_lig = data.frame()
dup_muts = data.frame()
cat(paste0("\nInput file to prepare for plotting:", infile_params, "\n") )
#===========================
# Read file: struct params
#===========================
my_df = read.csv(infile_params, header = T)
cat("\nInput dimensions:", dim(my_df))
#==================================
# add foldx outcome category
# and foldx scaled values
# This will enable to always have these variables available
# when calling for plots
#==================================
#------------------------------
# adding foldx scaled values
# scale data b/w -1 and 1
#------------------------------
n = which(colnames(my_df) == "ddg"); n
my_min = min(my_df[,n]); my_min
my_max = max(my_df[,n]); my_max
my_df$foldx_scaled = ifelse(my_df[,n] < 0
, my_df[,n]/abs(my_min)
, my_df[,n]/my_max)
# sanity check
my_min = min(my_df$foldx_scaled); my_min
my_max = max(my_df$foldx_scaled); my_max
if (my_min == -1 && my_max == 1){
cat("\nPASS: foldx ddg successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category")
}else{
cat("\nFAIL: could not scale foldx ddg values"
, "Aborting!\n")
}
#------------------------------
# adding foldx outcome category
# ddg<0 = "Stabilising" (-ve)
#------------------------------
c1 = table(my_df$ddg < 0)
my_df$foldx_outcome = ifelse(my_df$ddg < 0, "Stabilising", "Destabilising")
c2 = table(my_df$ddg < 0)
if ( all(c1 == c2) ){
cat("\nPASS: foldx outcome successfully created")
}else{
cat("\nFAIL: foldx outcome could not be created. Aborting!\n")
exit()
}
#==================================
# extract unique mutation entries
#==================================
# check for duplicate mutations
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these...\n"))
#cat(my_df[duplicated(my_df$mutationinformation),])
dup_muts = my_df[duplicated(my_df$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
, "\nNo. of unique duplicate mutations:", dup_muts_nu
, "\n\nExtracting df with unique mutations only\n"))
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
}else{
cat(paste0("\nNo duplicate mutations detected\n"))
my_df_u = my_df
}
upos = unique(my_df_u$position)
cat("\nDim of clean df:"); cat(dim(my_df_u), "\n")
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
#===============================================
# extract mutations <10 Angstroms and symbol
#===============================================
table(my_df_u$ligand_distance<mcsm_lig_cutoff)
my_df_u_lig = my_df_u[my_df_u$ligand_distance <mcsm_lig_cutoff,]
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10\u212b of the ligand\n"))
# return list of DFs
#return(list(my_df, my_df_u, my_df_u_lig, dup_muts))
#df_names = c("my_df", "my_df_u", "my_df_u_lig", "dup_muts")
all_df = list(my_df, my_df_u, my_df_u_lig, dup_muts)
#all_df = Map(setNames, all_df, df_names)
return(all_df)
}
########################################################################
# end of data extraction and cleaning for plots #
########################################################################

View file

@ -0,0 +1,61 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: importing global variable for plotting
# import_dirs()
# other global variables
#########################################################
# import_dirs(): similar to mkdirs from python script in repo.
# input args: 'drug' and 'gene'
# output: dir names for input and output files
import_dirs <- function(drug, gene) {
gene_match = paste0(gene,"_p.")
cat(gene_match)
#============================
# directories and variables
#============================
datadir <<- paste0("~/git/Data/")
indir <<- paste0(datadir, drug, "/input")
outdir <<- paste0("~/git/Data/", drug, "/output")
plotdir <<- paste0("~/git/Data/", drug, "/output/plots")
dr_muts_col <<- paste0('dr_mutations_', drug)
other_muts_col <<- paste0('other_mutations_', drug)
resistance_col <<- "drtype"
}
# other globals
#===============================
# mcsm ligand distance cut off
#===============================
#mcsm_lig_cutoff <<- 10
#==================
# Angstroms symbol
#==================
angstroms_symbol <<- "\u212b"
#cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10", angstroms_symbol, " of the ligand\n"))
#===============
# Delta symbol
#===============
delta_symbol <<- "\u0394"; delta_symbol
#==========
# Colours
#==========
mcsm_red2 <<- "#ae301e" # most negative
mcsm_red1 <<- "#f8766d"
mcsm_mid <<- "white" # middle
mcsm_blue1 <<- "#00bfc4"
mcsm_blue2 <<- "#007d85" # most positive

View file

@ -0,0 +1,125 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: function for barplot showing no. of sites with nsSNP
# count
#########################################################
# load libraries and functions
library(ggplot2)
library(data.table)
library(dplyr)
theme_set(theme_grey())
#=================================================================
# site_snp_count_bp(): barplots for no. of sites and nsSNP count
# input args
## df containing data to plot
## df column name containing site/position numbers
## ...opt args
# TODO:
# legend params, currently it appears as title
# visually might be nicer for it to be inside the plot
#=================================================================
site_snp_count_bp <- function (plotdf
, df_colname = "position"
#, bp_plot_title = ""
#, leg_title = "Legend title"
, leg_text_size = 20
, axis_text_size = 25
, axis_label_size = 22
, xaxis_title = "Number of nsSNPs"
, yaxis_title = "Number of Sites"){
# dim of plotdf
cat(paste0("\noriginal df dimensions:"
, "\nNo. of rows:", nrow(plotdf)
, "\nNo. of cols:", ncol(plotdf)
, "\nNow adding column: frequency of mutational positions"))
# adding snpcount for each position
setDT(plotdf)[, pos_count := .N, by = .(eval(parse(text = df_colname)))]
cat("\nCumulative nssnp count\n"
, table(plotdf$pos_count))
# calculating total no. of mutations
tot_muts = sum(table(plotdf$pos_count))
# sanity check
if(tot_muts == nrow(plotdf)){
cat("\nPASS: total number of mutations match"
, "\nTotal no. of nsSNPs:", tot_muts)
} else{
cat("\nWARNING: total no. of muts = ", tot_muts
, "\nExpected = ", nrow(plotdf))
}
# revised dimensions
cat(paste0("\nrevised df dimensions:"
, "\nNo. of rows:", nrow(plotdf)
, "\nNo. of cols:", ncol(plotdf)))
# use group by on pos_count
snpsBYpos_df <- plotdf %>%
group_by(eval(parse(text = df_colname))) %>%
summarize(snpsBYpos = mean(pos_count))
cat("\nnssnp count\n"
, table(snpsBYpos_df$snpsBYpos))
# calculating total no. of sites associated with nsSNPs
tot_sites = sum(table(snpsBYpos_df$snpsBYpos))
# sanity check
if(tot_sites == length(unique(plotdf$position))){
cat("\nPASS: total number of mutation sites match"
, "\nTotal no. of sites with nsSNPs:", tot_sites)
} else{
cat("WARNING: total no. of sites = ", tot_sites
, "\nExpected = ", length(unique(plotdf$position)))
}
# FIXME: should really be legend title
# but atm being using as plot title
my_leg_title = paste0("Total nsSNPs:", tot_muts
, ", Total no. of nsSNPs sites:", tot_sites)
bp_plot_title = my_leg_title
#-------------
# start plot 2
#--------------
# to make x axis display all positions
# not sure if to use with sort or directly
my_x = sort(unique(snpsBYpos_df$snpsBYpos))
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
OutPlot_pos_count = g + geom_bar(aes (alpha = 0.5)
, show.legend = FALSE) +
scale_x_continuous(breaks = unique(snpsBYpos_df$snpsBYpos)) +
geom_label(stat = "count", aes(label = ..count..)
, color = "black"
, size = 10) +
theme(axis.text.x = element_text(size = axis_text_size
, angle = 0)
, axis.text.y = element_text(size = axis_text_size
, angle = 0
, hjust = 1)
, axis.title.x = element_text(size = axis_label_size)
, axis.title.y = element_text(size = axis_label_size)
#, legend.position = c(0.73,0.8)
#, legend.text = element_text(size = leg_text_size)
#, legend.title = element_text(size = axis_label_size)
, plot.title = element_text(size = leg_text_size)) +
labs(title = bp_plot_title
, x = xaxis_title
, y = yaxis_title)
return(OutPlot_pos_count)
}
########################################################################
# end of function
########################################################################

View file

@ -0,0 +1,50 @@
#!/usr/bin/env Rscript
#########################################################
# TASK: function for basic barplot returning stability counts
#########################################################
# load libraries and functions
library(ggplot2)
theme_set(theme_grey())
#==========================================================
# stability_count_bp(): basic barplots for stability counts
# input args
## df containing data to plot
## df column name containing stability outcome
## legend title
## ...opt args
#==========================================================
stability_count_bp <- function(plotdf
, df_colname
, leg_title = "Legend title"
, axis_text_size = 25
, axis_label_size = 22
, leg_text_size = 20
, yaxis_title = "Number of nsSNPs"
, bp_plot_title = ""){
OutPlot_count = ggplot(plotdf, aes(x = eval(parse(text = df_colname)))) +
geom_bar(aes(fill = eval(parse(text = df_colname))), show.legend = TRUE) +
geom_label(stat = "count"
, aes(label = ..count..)
, color = "black"
, show.legend = FALSE
, size = 10) +
theme(axis.text.x = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_text(size = axis_label_size)
, axis.text.y = element_text(size = axis_text_size)
, legend.position = c(0.73,0.8)
, legend.text = element_text(size = leg_text_size)
, legend.title = element_text(size = axis_label_size)
, plot.title = element_text(size = axis_label_size)) +
labs(title = bp_plot_title
, y = yaxis_title) +
scale_fill_discrete(name = leg_title
, labels = c("Destabilising", "Stabilising"))
return(OutPlot_count)
}
#############################################################
# end of function
#############################################################

View file

@ -0,0 +1,103 @@
setwd("~/git/LSHTM_analysis/scripts/plotting/functions")
getwd()
#############################################################
#===========================================
# load functions, data, dirs, hardocded vars
# that will be used in testing the functions
#===========================================
source("../plotting_data.R")
infile = "/home/tanu/git/Data/streptomycin/output/gid_comb_stab_struc_params.csv"
pd_df = plotting_data(infile)
my_df = pd_df[[1]]
my_df_u = pd_df[[2]]
my_df_u_lig = pd_df[[3]]
dup_muts = pd_df[[4]]
source("../plotting_globals.R")
drug = "streptomycin"
gene = "gid"
import_dirs(drug, gene)
#=====================
# functions to test
#=====================
source("stability_count_bp.R")
source("position_count_bp.R")
##################################################################
# ------------------------------
# barplot for mscm stability
# ------------------------------
basic_bp_duet = paste0(tolower(gene), "_basic_barplot_PS.svg")
plot_basic_bp_duet = paste0(plotdir,"/", basic_bp_duet)
svg(plot_basic_bp_duet)
print(paste0("plot filename:", basic_bp_duet))
# function only
stability_count_bp(plotdf = my_df_u
, df_colname = "duet_outcome"
, leg_title = "DUET outcome")
dev.off()
# ------------------------------
# barplot for ligand affinity
# ------------------------------
basic_bp_ligand = paste0(tolower(gene), "_basic_barplot_LIG.svg")
plot_basic_bp_ligand = paste0(plotdir, "/", basic_bp_ligand)
svg(plot_basic_bp_ligand)
print(paste0("plot filename:", basic_bp_ligand))
# function only
stability_count_bp(plotdf = my_df_u_lig
, df_colname = "ligand_outcome"
, leg_title = "Ligand outcome"
, bp_plot_title = "Sites < 10 Ang of ligand")
dev.off()
# ------------------------------
# barplot for foldX
# ------------------------------
basic_bp_foldx = paste0(tolower(gene), "_basic_barplot_foldx.svg")
plot_basic_bp_foldx = paste0(plotdir,"/", basic_bp_foldx)
svg(plot_basic_bp_foldx)
print(paste0("plot filename:", plot_basic_bp_foldx))
stability_count_bp(plotdf = my_df_u
, df_colname = "foldx_outcome"
, leg_title = "FoldX outcome")
dev.off()
#===============================================================
# ------------------------------
# barplot for nssnp site count: all
# ------------------------------
pos_count_duet = paste0(tolower(gene), "_position_count_PS.svg")
plot_pos_count_duet = paste0(plotdir, "/", pos_count_duet)
svg(plot_pos_count_duet)
print(paste0("plot filename:", plot_pos_count_duet))
# function only
site_snp_count_bp(plotdf = my_df_u
, df_colname = "position")
dev.off()
# ------------------------------
# barplot for nssnp site count: within 10 Ang
# ------------------------------
pos_count_ligand = paste0(tolower(gene), "_position_count_LIG.svg")
plot_pos_count_ligand = paste0(plotdir, "/", pos_count_ligand)
svg(plot_pos_count_ligand)
print(paste0("plot filename:", plot_pos_count_ligand))
# function only
site_snp_count_bp(plotdf = my_df_u_lig
, df_colname = "position")
dev.off()
#===============================================================